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Abstract

The thesis of this dissertation is that complexity and algorithms, used appropriately,

are important factors in assessing the value and uses of election systems. The chapter on

search versus decision points out the importance of that “appropriately”; it proves that un-

less integer factoring is easy, the standard definitions of manipulability do not capture what

they were designed to capture. Other chapters use complexity and algorithms to analyze

the complexity of various types of manipulative attacks on elections, as a way of under-

standing how computationally vulnerable election systems are. Among the contributions of

those chapters are: showing that a type of range voting is the most control-attack resistant

among all currently analyzed natural election systems; exploring for the first time the de-

tailed control complexity of Schulze elections; and exploring the parameterized complexity

of manipulative actions in Schulze and ranked-pairs elections. Such results will better allow

choosers of election methods to match the protections of the systems they choose with the

types of attack that are of greatest concern.
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Chapter 1

Introduction

This chapter provides an introduction to the thesis, a summary of its results, and an overview

of its organization.

1.1 Introduction

Elections have been a tool for collaborative decision-making for thousands of years, dating

back at least as far as ancient Greece. The formal study of voting began in the 18th

century and continues as a vibrant discipline drawing on mathematics, economics, and

political science. The classic stream of voting theory work was concerned with evaluating

election systems, often on the basis of various criteria. One of the earliest examples of

this is the work of the Marquis de Condorcet, an 18th century French mathematician and

philosopher. Condorcet’s criterion states that an election system should select a candidate

that is preferred pairwise to every other candidate by a majority of voters. This work

initiated a rivalry with Jean Charles de Borda, whose voting system Borda count fails to

satisfy this criterion. But in a foreshadowing of later key results, it turns out that no voting

system can always satisfy Condorcet’s goal, as such a candidate does not always exist, due

to the possibility of cycles in pairwise preferences. This is termed the Condorcet Paradox,

and systems that do select such a candidate if they do exist are considered to satisfy the

Condorcet criterion.

Like the Condorcet Paradox, the key modern results of voting theory show that all elec-

tion systems are imperfect. Arrow’s Theorem shows that no election system can satisfy all

of a set of reasonable and desirable criteria [Arr50]. According to Paul Samuelson [Pou08],

“What Kenneth Arrow proved once and for all is that there cannot possibly be . . . an

ideal voting scheme.” Another key flaw was identified by the Gibbard-Satterthwaite Theo-
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rem [Gib73, Sat75] (and the later extension of this result by Duggan and Schwartz [DS00]):

All reasonable voting systems are subject in some cases to manipulation (i.e., strategic vot-

ing). That is, there will be some cases where a voter will have incentive to vote contrary to

their true preferences in order to achieve a better outcome. There had long been awareness of

the problem of strategic voting, but it had never been adequately resolved. When confronted

with the potential for strategic voting in his system, Jean Charles de Borda exclaimed “My

scheme is only intended for honest men” [Bla58]. But much later the Gibbard-Satterthwaite

Theorem proved that not just Borda’s system but instead all reasonable systems have the

same flaw.

Of course, even with these challenging results the study of voting continued to flourish,

but with the understanding that no perfect system can exist, and one must instead find

the best tradeoffs or compromises, and choose a system that satisfies the most important

requirements for the task at hand. And with the increasing prevalence and importance of

elections in our democratic world, solving the problems of voting is as important as ever.

The field of computational social choice offers a compromise solution to the problems of

strategic voting and other manipulative attacks: Even if such actions are possible, it may be

that in some systems planning such attacks is beyond the capabilities of a computationally

limited attacker, which should provide significant protection against these attacks in prac-

tice. This field was kicked off by the work of Bartholdi, Tovey, and Trick, who introduced

the computational study of manipulation [BTT89a] and control [BTT92]. Manipulation

models the problem of strategic voting (the classic manipulation problem) and control mod-

els various manipulative actions taken by a dishonest election chair, e.g., deleting voters

or adding candidates. Faliszewski, Hemaspaandra, and Hemaspaandra [FHH09] later intro-

duced the bribery problem, a sort of extended version of manipulation where a briber first

selects voters to bribe and then assigns their votes. All these problems are formalized as

problems in the standard way in computer science and their difficulty is analyzed using the

tools of complexity theory.

Computational issues in voting have become more significant and urgent with the in-

creasing importance of voting in artificial intelligence and multiagent systems, with compu-

tational social choice sometimes being considered a subarea of multiagent systems. Some

applications include recommender systems [GMHS99, PHG00], consensus mechanisms for

planning [ER91] and search engine design [Lif00, DKNS01]. In such elections, electronically

implemented, and with potentially large numbers of both voters and candidates, computa-

tional issues are more likely to come to the forefront.

Thus an explosion of work has followed in recent years, with a great variety of problems

studied in many voting systems. There has been a great amount of work studying the

standard worst-case complexity of manipulative actions in various voting systems.
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In the case of manipulation, Bartholdi and Orlin closely followed the original paper of

Bartholdi, Tovey, and Trick [BTT89a] with work showing manipulation to be hard in the

popular system single transferable vote [BO91]. Conitzer, Sandholm, and Lang [CSL07]

found exactly how many candidates are required to be present for manipulation to be NP-

hard in a variety of voting systems. Xia, Zuckerman, Procaccia, Conitzer, and Rosen-

schein [XZP+09] found unweighted manipulation to be hard for maximin and ranked pairs.

Work by Faliszewski, Hemaspaandra, and Schnoor studied the complexity of manipulation

in several variants of the Copeland voting system [FHS08, FHS10]. The survey by Menton

and Singh ([MS12], also included as Appendix A of this thesis) covers much of what is known

about the basic unweighted manipulation problem.

In the case of bribery, Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe studied the

complexity of bribery in the Llull and Copeland systems [FHHR07]. Schlotter, Faliszewski,

and Elkind studied the complexity of bribery in several approval-like voting systems [SFE11].

Elkind, Faliszewski, and Slinko studied the complexity of a finer-grained bribery variant

termed swap bribery [EFS09].

In the case of control, Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe found Llull

and Copeland elections to resist every variant of constructive control [FHHR07]. Erdélyi,

Nowak, and Rothe found the approval-like system SP-AV to be broadly resistant to con-

trol [ENR09]. Erdélyi, Piras, and Rothe found the system fallback voting to resist nearly

every standard control case [EPR11], and Menton found normalized range voting to match

fallback voting’s control resistances ([Men12], also presented in part in Chapter 5 of this

thesis).

More recently, a significant amount of work has branched out from standard worst-

case results, including work on approximation algorithms [BFH+08, ZPR09, EF10a], phase

transitions [Wal09], and parameterized complexity ([DS12, BU09, FHHR09], see also the

survey [BBCN12]), and also including work on cases with restricted or alternative vote

models, such as the irrational-vote model [FHS10] and single-peaked preferences [FHHR11].

The goal of this thesis is to study and classify the complexity of manipulative attacks

on several popular election systems. The work here includes both classical worst-case com-

plexity analysis and parameterized complexity analysis. The work in this thesis studies

the systems normalized range voting [Smi00], Schulze voting [Sch11], and ranked-pairs vot-

ing [Tid87]. These systems are recently introduced, academically studied voting systems

that also have garnered a great deal of interest, and especially in the case of Schulze voting,

a great deal of real-world use. Any choice of a voting system involves tradeoffs, and it is

important to have as much information as possible about the properties of various voting

systems of interest so a system with the most important desirable properties can be chosen

for a particular purpose. Thus we hope that this work can aid the choosers of election sys-
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tems in cases when computational resistance to manipulative action is an election property

of concern.

Beyond the primary focus of this thesis, the other main contribution is work comparing

the complexity of search and decision for election manipulative actions. This work is targeted

primarily at the stream of computational social choice research rather than at the organizers

of elections, and it shows that for many of the standard set of election manipulative actions,

the complexity of the search and decision version can differ. Thus the standard definition

of computational vulnerability, which is based on the decision problem, is too broad, as it

is possible for the decision version to be easy while the search version is hard. This work

implies that decades of work in computational social choice has used the wrong definition

for the key notion of system vulnerability, and the field should refocus to be more concerned

about search problems.

1.2 Summary of Results

1.2.1 Control in Schulze Voting

Schulze voting is a recently introduced voting system that has gained a large amount of

real-world use. Though it hails from academic literature [Sch11] and is more complex to

describe than most other popular voting systems, it has become quite widespread as the

voting system of choice for a large number of organizations, including political parties,

open-source software projects, and MTV [Wik12]. According to Wikipedia, “currently the

Schulze method is the most widespread Condorcet method” [Wik12].

Schulze voting determines the winners of an election in the following way: The system

builds a graph representation of the election called the weighted majority graph (WMG),

where vertices are candidates and edges represent with their weights the result of each

pairwise contest between candidates. Then we find all the best paths in the graph from

every vertex to every other vertex. The winners are then the candidates that are unbeaten

by any other candidate in best-path strength. Though this is a much more algorithmically

involved winner problem that most typical popular voting systems, it is still solvable in

polynomial time, so Schulze is a tractable voting system.

Earlier work by Parkes and Xia [PX12] examined the manipulation, bribery, and control

complexity of Schulze voting, but it left many open problems, including all control cases but

a few. So here we present results resolving many of these open problems. We prove that

Schulze voting is computationally resistant to at least 15 of the 22 standard control cases

and we prove that it is vulnerable to several others. Additionally, in the course of proving

our results we find that in fact a broad class of voting systems are vulnerable to several
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of these cases, namely Condorcet voting systems that also possess a “weak” version of the

Condorcet criterion, and the relevant control cases are all the possible variants of destructive

control by partition of candidates. For the few control problems that we do not resolve, we

connect their complexity to a graph cut variant called path-preserving vertex cut.

The work in this chapter is in the vein of classical worst-case complexity. We proved our

resistance results using standard polynomial-time many-one reductions, in every case from

3SAT.

This work achieves valuable results expanding what is known about the popular system

Schulze voting. Given Schulze voting’s popularity and widespread use, it is important to

understand its behavior under election manipulative actions so that its use can be evaluated

in situations when computational resistance is a desirable property.

1.2.2 Parameterized Complexity in Schulze Voting and Ranked

Pairs

The work of Parkes and Xia [PX12] and the work presented here found that Schulze voting

and another system, ranked pairs, resist many of the standard manipulative actions. But

a common worry is that worst-case hardness results will not mean that carrying out a

manipulative action is hard in practice, as such actions may be relatively easy in common

inputs with a small number of candidates. This work formally explores this notion by

examining the parameterized complexity of manipulative actions in Schulze and ranked

pairs.

Ranked pairs is a voting system with a highly sequential winner determination procedure.

The winners are determined by sorting the WMG edges by decreasing weight, and building

a new graph by including them in order, but discarding edges that create cycles (there are

other intricacies having to do with tiebreaking that are described in Section 2.1.7). The

winner is the candidate that has no in-edges in this final graph. Recall that the Condorcet

Paradox is due to the possibility of cycles in the WMG. In ranked-pairs voting we build

a new cycle-free graph, and from this graph it is easy to determine a clear Condorcet-like

winner.

We find that every standard manipulative action problem is in FPT for both Schulze

and ranked pairs when parameterized on the number of candidates, thus proving that the

difficulty of any of these problems depends in an essential way on the number of candidates,

and proving that they are relatively easy when the number of candidates is bounded. The

candidate control cases were reasonably trivially solvable through brute force without special

structures or algorithms, as when the number of candidates is bounded, the number of

possible actions in these cases is bounded too and we can just brute force over them.
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However, the manipulation, bribery, and voter control results required much more so-

phisticated techniques, to the extent that techniques used to achieve our results are as

significant a contribution as the results themselves. The results were obtained through

building a structure for each of these voting systems that models a particular strategy for

manipulative action, and embedding the problem of using this strategy into an integer lin-

ear program. We can then brute-force over all possible strategies and solve these programs

efficiently (with a fixed number of candidates) using Lenstra’s algorithm [Len83]. Although

other work has taken a similar approach of embedding manipulative action problems in

linear programs (for instance, [FHHR09]), the complexity of the two systems studied here

requires much more sophisticated structures for describing the strategies involved in winning

such an election.

The structure for Schulze elections, the Schulze Winner-Set Certification Framework

(SWCF), describes the winner set of the election and the particular strategy for victory that

each winner took. For Schulze, this means the strong paths from each winning candidate to

every other candidate. In the case of losing candidates, it specifies a path to that candidate

that the loser cannot beat. Normally the number of such structures would be far to large

to loop over, but when we consider a fixed number of candidates the number is fixed. We

then embed each into an integer linear programming feasibility problem (ILPFP), with the

constraints primarily modeling inequalities between WMG edge weights—We enforce the

claims of the SWCF by claiming that every edge in every supposedly strong path is at

least as strong as every edge in every path in the opposite direction. An assignment to the

variables of this ILPFP corresponds to an attempt to satisfy the strategy of that particular

SWCF, so if the ILPFP is feasible, we have success. Again, in normal circumstances the

size of such an ILPFP would be simply enormous, but it remains polynomial in size with a

fixed number of candidates, and furthermore the number of variables is fixed, enabling us

to achieve good performance from Lenstra’s algorithm [Len83].

The Ranked-Pairs Winner-Set Certification Framework is similar in concept, though it

makes very different claims due to the unusually sequential nature of the voting system.

The framework consists of a script describing the sequential operation of the system: what

edges are considered in what order, and whether and how the edges are set in the election

graph that is being built. The number of such structures is exponential in the number of

candidates, but it is constant with a fixed number of candidates. And we can embed the

problem of satisfying such a structure in an ILPFP, largely in terms of inequalities between

edges as before. Thus we can reuse much of our work for Schulze for ranked-pairs given the

frameworks we build for each.

Once we have our basic approach and the WCF structures for both Schulze and ranked

pairs, achieving the results is relatively straightforward. For each manipulative action,
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we describe how to implement the core types of constraints that we need for both voting

systems (built in terms of inequalities between edge weights), and also additional constraints

to ensure the validity of the manipulative action.

We pushed these techniques to their limits for these two voting systems, even handling

some weighted cases of manipulative actions, and also achieved results in some other param-

eterizations, in some cases achieving W[2]-hardness results and showing that those problems

are very unlikely to be in FPT. The techniques used here could lead to results in many

similar voting systems.

1.2.3 Control in NRV

Range voting (RV) is a voting system using an alternative voter model that allows voters to

score candidates individually in a range from 0 to some k, rather than having to rank the

candidates in a linear order. Normalized range voting (NRV) is a range voting variant that

maximizes the influence of each voter by normalizing their vote so that their scores span the

entire range available to them. The complex, shifting behavior induced by the normalization

step subtly but significantly changes the properties of the voting system. Normalized range

voting does not possess some of the nice proprieties possessed by range voting (especially

independence of irrelevant alternatives, one of Arrow’s criteria), but instead it possesses a

notable number of resistances to control.

Earlier work resolved the complexity of all but one case of control for normalized range

voting [Men09]. The work presented here resolves the final open case, destructive control by

partition of voters in the ties-eliminate model. This work was again working in the standard

classical complexity model, and this proof was accomplished with a polynomial-time many-

one reduction from the Exact Cover by Three-Sets problem.

Thus this work shows that normalized range voting possesses 20 of the 22 standard

control cases, a number unbeaten by any natural voting system. Unnatural systems exist

that are resistant to every single case [HHR09], though they would likely not be acceptable

for practical use. Besides NRV, the system fallback voting is currently known to possess the

same set of 20 control resistances [ER10, EF10b, EPR11].

Range voting and normalized range voting were already popular voting systems, with

many enthusiastic advocates. This work shows that normalized range voting is even more

attractive than thought when computational resistance to control is a significant factor of

concern.
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1.2.4 Reducing Search to Decision for Election Problems

The standard definitions of resistance and vulnerability of a voting system to a manipula-

tive action are based on decision problems for the manipulative actions [BTT89a]. Studying

problems in terms of decision problems has been the primary convention over decades of

theoretical computer science research. However, in most cases the complexity of the as-

sociated search problem—the problem of finding a solution, not just finding whether one

exists—is more practically relevant. We don’t just want to know whether we can succeed

in manipulation, we want to know how to do it! If the complexities of search and decision

are always same, then there is no problem. But if the complexities can differ, then we may

misassess the practical difficulty of a problem: We could say that a system is vulnerable to

a particular manipulative action when actually finding the solution for that action is hard.

We prove that for many of the standard election manipulative actions, the search problem

efficiently reduces to the decision problem, thereby tying the complexity of search and

decision together. For these cases the conventions of the field present no problems and a

claim of either vulnerability or resistance will correspond to the practical difficulty of the

problem.

However, in the remaining cases, we show that there is a voting system for which the

complexities of the search and decision versions of that problem are provably different, given

the common complexity theoretic assumption that P 6= NP ∩ coNP. These proofs draw in

part on a complexity-theoretic result known as the Borodin-Demers Theorem [BD76]. That

result says that unless P = NP∩ coNP there exists a polynomial-time recognizable set that

is a subset of SAT, yet whose search version is not polynomial-time computable. For each

manipulative action problem, we construct a voting system based on such a Borodin-Demers

set where that manipulative action decision problem is in P, but for which the manipulative

action search problem cannot have a polynomial-time function (since the Borodin-Demers

set search problem reduces to this problem). We note that this is the first use of the Borodin-

Demers Theorem in an applied domain that we are aware of. And we also note that it is

highly surprising that it is possible to achieve such results for elections: the Borodin-Demers

set is in the domain of SAT, but SAT is easily self-reducible and so the complexities of search

and decision are tied together, but elections, despite being an entirely different domain, have

so much potential complexity and so little structure that we are able successfully embed the

Borodin-Demers set within them.

Assuming that P 6= NP ∩ coNP, there will be voting systems for which a group of

manipulators will sometimes note that they are sure there is some way for them to succeed

in manipulation, but they have no idea how to carry that plan out. It must be that P 6=

NP∩coNP for the problem of factoring large integers to be hard, so the usability of the RSA

cryptosystem and the security of a large portion of secure communications depends on this
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assumption. This work thus implies that of computational social choice should realign to

be more concerned with the complexity of search problems, at least in the case of easiness

results.

1.3 Organization of this Thesis

This thesis is organized as follows: Chapter 2 provides preliminaries and definitions. Chap-

ter 3 describes work on the control complexity of Schulze voting. Chapter 4 describes work

on the parameterized complexity of manipulative actions in Schulze as well as another sys-

tem known as ranked pairs. Chapter 5 describes work completing the worst-case analysis

of control in the system normalized range voting. Chapter 6 describes work comparing the

complexity of the search and decision versions of election manipulative action problems. Ad-

ditionally, a survey on tractable voting systems that are hard to manipulate with a constant

number of manipulators is included as Chapter A.
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Chapter 2

Preliminaries

2.1 Voting Theory

Formally, an election is a pair (C, V ) where C is the set of candidates and V is the set of

voters. Each voter has a unique name so they can be uniquely identified, and (except when

otherwise specified) a strict linear preference ordering over the candidates. Often the voter

names are disregarded and a voting system only uses the voter preferences to determine the

winners. When we write out a preference ordering, we write the most-preferred candidate

first, as a > b > c for a vote preferring a over b over c.

A voting system (or an election system) is a function that takes as input an election

(C, V ) and produces a set of winners, a subset of the candidate set C. While in a political

context we often want an election to result in a single winner, there are other situations

where it is reasonable to select multiple winners or possibly none at all. For instance, several

countries have allowed voters to select “none of the above” in elections otherwise operating

as plurality elections (where voters select their top choice and the candidate with the most

votes wins), with no candidate being selected if this choice is the most favored. And the

voting process used to select entrants to the Baseball Hall of Fame can potentially select no

entrants, and has done so on two separate occasions.

Also, many natural voting systems can potentially result in a two-or-more-way tie, and

some tiebreaking procedure would have to be implemented to select a single winner. We

choose not to require the incorporation of such a mechanism into our voting systems and

instead allow them to output multiple winners.
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2.1.1 The Condorcet Criterion

The key results in voting theory show that no voting system is perfect, that there are inherent

problems with voting that no voting system can fix. The first example of such a result was the

work of the Marquis de Condorcet, an 18th century French mathematician. He introduced

a seemingly reasonable goal for a voting system to achieve: A voting system should select

a candidate that when compared pairwise to each other candidate, is preferred to those

candidates by a majority of voters. Such a candidate is known as a Condorcet winner.

However, Condorcet discovered that such a candidate does not exist in every election. This

is because there can be cycles in the pairwise preferences in an election.

For instance, consider an election over candidates {a, b, c} where we have the following

votes.

• a > b > c

• b > c > a

• c > a > b.

In this election, two voters prefer a over b, two prefer b over c, and two prefer c over a.

Thus our overall preferences are irrational and cyclic and there is no Condorcet winner.

A voting system is said to satisfy the Condorcet criterion, or to be a Condorcet or

Condorcet-consistent voting system, if it selects a Condorcet winner as the only winner

whenever one does exist. Notably, many common voting systems do not satisfy this criterion.

For instance, consider the following plurality election over candidates {a, b, c}.

# Voters Preferences

5 a > b > c

4 b > c > a

2 c > b > a

In this election, using the plurality system, a will be the only winner, having the most

first-place votes, but b in fact is the Condorcet winner, with six out of eleven votes ranking

b over a and nine out of eleven votes ranking b over c.

2.1.2 Arrow’s Theorem

The modern study of elections began with the work of Kenneth Arrow [Arr50]. Arrow

formalized the standard model of a voting system, where votes are given as linear orderings

of the candidates. This was in contrast to the previous economic model which aggregated
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preferences from numerical utilities, representing the economic utility a voter would gain

from the selection of each candidate.

Next, he described a set of reasonable criteria that one would want any voting system

to satisfy, and showed that no voting system can satisfy all of them. The criteria are the

following. One is unrestricted domain, meaning that no set of votes should be inadmissible

as input to the voting system. Another is nonimposition, meaning that all election outcomes

should be possible. Another is monotonicity, meaning that increasing the ranking for some

candidate in a vote should never hurt the overall performance of that candidate. Another is

nondictatorship, meaning that no one voter should decide the entire outcome of an election.

The last and hardest to understand is independence of irrelevant alternatives. This criterion

is satisfied if the overall relative ranking of two candidates is not affected by changes in the

preferences of voters for other candidates.

Arrow showed that no voting system can satisfy all of these criteria, so we must always

compromise and be willing to give up at least one of them. For instance, the voting system

plurality fails to meet the criterion independence of irrelevant alternatives, and the system

single transferable vote is not even monotonic, inspiring Doron and Kronick to refer to it as

a “perverse social choice function” [DK77].

2.1.3 Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite Theorem shows that any voting system that chooses a unique

winner is susceptible to strategic voting, also known as manipulation [Gib73, Sat75]. That

is, in any voting system there will be cases where a voter can achieve a result more in

line with their preferences by voting in some way counter to their true preferences. The

later Duggan-Schwartz Theorem extended this result to elections that can have multiple

winners [DS00].

For instance, consider a plurality election over candidates {a, b, c} where we have the

following voters.

# Preferences

5 a > b > c

4 b > a > c

2 c > b > a

In the initial election, a has the most first-place votes (five) so a will be the plurality

winner. However, if both of the voters in the third class strategically vote by reversing c and

b in their votes, b will be the clear winner of the election with six first-place votes. Thus by

voting contrary to their true preferences, these voters achieve a better result for themselves,



www.manaraa.com

13

the selection of their second favorite instead of their least favorite candidate.

2.1.4 Voting Systems

Though there are many voting systems, most common voting systems can be organized into

a few categories. Many common voting systems can be formalized as scoring protocols. In

a scoring protocol, we have a scoring vector α = (α1, α2, . . . , αm) of nonnegative integers in

an election with m candidates, where α1 ≥ α2 ≥ · · · ≥ αm. This vector is used to award

points to candidates based on their position in each vote, with the first-ranked candidate

in a vote earning α1 points from that vote, the second-ranked candidate earning α2 points

from that vote, and so on, down to the least-preferred candidate earning αm points. The

winners for the election are the candidates with the most cumulative points over all votes.

The plurality voting system, for instance, can be considered a scoring protocol with

a scoring vector (1, 0, 0, . . . , 0) of appropriate length, while the “opposite” voting system,

veto, where each voter picks one candidate to reject, is represented with a vector matching

(1, 1, . . . , 1, 0). Borda voting is a scoring protocol with the scoring vector (m − 1,m −

2, . . . , 1, 0).

Another class of voting systems are those where the winner is determined through pair-

wise comparisons of the candidates. These are often voting systems that meet the Condorcet

criterion. One such system is Copeland voting, where candidates are awarded points from

pairwise victories (and potentially some points from pairwise ties, depending on the variant)

and the candidate with the most points wins. A variant of this system was introduced by

the 13th century mystic Ramon Llull, with this work, some of the earliest known in the

study of voting, lying undiscovered for hundreds of years.

For such voting systems we determine the winner through comparison of the relative

preferences of voters between pairs of candidates rather than with candidate’s specific rank-

ings within votes. We will thus introduce some useful objects and notation. The weighted

majority graph (WMG) is a graph representation of an election, with vertices corresponding

to candidates and edges representing the relative performance of pairs of candidates. The

weight of an edge from a to b, also termed the net advantage for a over b, is the number of

votes that prefer a over b minus the number that prefer b over a.

It is obviously easily possible to construct the WMG given a collection of votes, but

it is interesting to note that we can easily convert in the other direction as well. Given a

WMG where either all the edge weights are even or all the edge weights are odd, we can

construct an equivalent set of votes in time polynomial in the number of candidates and in

the maximum magnitude of any edge weight. This method is due to McGarvey [McG53].

We will use this method later to more easily construct elections in the course of reductions,
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in order to avoid having to explicitly specify the votes.

Other voting systems eschew the standard linear-order vote model and instead allow

voters to rate candidates individually. Rather than ranking the candidates in order of

preference, voters give some abstraction of their utility for the selection of each candidate.

Such voting systems are thus known as utilitarian voting systems [Hil05]. This is essentially

the model that Arrow rejected due to the incomparability of personal utilities. The best

known system in this class is approval voting, where voters choose to approve or disapprove

of each candidate (or score them as 0 or 1), and the most approved candidates win. A

natural extension, range voting, allows voters to use a wider score range, ranging from 0

to k, with k being a parameter for the voting system, and the candidates with the highest

sum score over all the votes win [Smi00]. There are also some voting systems that make

use of both a standard preference ordering and an approval vector, such as sincere-strategy

preference-based approval voting (SP-AV) [BS06] and fallback voting [ER10].

2.1.5 Range Voting and Normalized Range Voting

Range voting (RV) is a voting system that uses an alternative voter model [Smi00]. Range

voting is essentially an extension of approval voting, where voters can simply score can-

didates within a larger range than 0–1. Given the votes, the winners are determined by

adding up the scores for all the candidates and the highest scored candidates win. We say

that a k-range election is one where the available scoring range is 0–k. Of course, when k is

1 the system is identical to approval voting. As this system does not use Arrow’s model of

a voting system, it is not constrained by Arrow’s celebrated Impossibility Theorem [Smi00]

(which is also true for approval voting).

Normalized range voting (NRV) is a range voting variant that maximizes the influence

of each voter by normalizing their vote so that their scores span the entire range available

to them. Voters specify their vote in the same way as in standard range voting, but as part

of the vote aggregation process, each vote is normalized to span the entire rational range

[0, k] with the same relative preferences between candidates as given in the initial vote.

Formally, in a vote with maximum and minimum scores m and n with m > n, each score

s is normalized to k(s−n)
m−n

. This will give the voter’s highest ranked candidate a score of

k, their lowest ranked candidate a score of 0, and all candidates in between will be scored

proportionally with the original vote. Any vote that gives the same score to each candidate

will not be counted, as these unconcerned votes would not affect the election anyways. We

make no effort to coerce an unconcerned vote into one distinguishing between candidates.

For instance, consider the following 10-normalized range election over candidates {a, b, c}.
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# Voters a score b score c score

3 10 5 0

3 4 10 0

1 10 9 8

score 52 54 8

In this election, b has the most points before the normalization step, but the last voter

is not making full use of their influence. The normalization step will reevaluate the votes

and arrive at the following.

# Voters a score b score c score

3 10 5 0

3 4 10 0

1 10 5 0

score 52 50 0

Now, the final voter is making use of the full scoring range and exerting their full influence

on the election. With the normalized scores, a receives the most points and is the only winner

of the election.

This new behavior significantly alters the properties of the voting system. Notably,

normalized range voting no longer possesses some of the nice properties of standard range

voting. Namely, it no longer satisfies the criterion independence of irrelevant alternatives.

2.1.6 Schulze Voting

Schulze voting is a Condorcet voting system recently introduced by Marcus Schulze [Sch11].

It has a somewhat more complex winner procedure than other common voting systems,

requiring the use of a graph best-path finding algorithm, but it is still solvable in polynomial

time, rendering Schulze a tractable voting system.

Schulze voting is currently used by a number of organizations for their internal elections,

including the Wikimedia foundation, several branches of the Pirate Party, a civil-liberties

focused political party, and by MTV to rank music videos [Wik12]. This level of real-world

usage is unusual for a new, academically proposed and studied voting system, but it makes

Schulze voting more compelling to analyze.

The winners in a Schulze election are determined as follows. Generate the weighted ma-

jority graph (WMG) for the election. Determine the strongest paths in this graph between

every pair of candidates by the following metric: The weight of a path is the lowest weight

edge in the path. This is the “bottleneck” metric. We can adapt the Floyd-Warshall dy-

namic programming algorithm to find the weight of such paths in polynomial time [Sch11],
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as shown in Algorithm 1.

Algorithm 1 Procedure to calculate Schulze best-path scores, adapted from the Floyd-
Warshall algorithm.

Start
initialize paths to WMG edge weights
for k = 1 to m do

for i = 1 to m do
for j = 1 to m do
if i == j then
next

end if
newpath← min(paths[i][k], paths[k][j])
paths[i][j]← max(newpath, paths[i][j])

end for
end for

end for
return paths
End

Once we have the best path weights, we build another graph with the same vertices

where there is a directed edge from a to b if the best path from a to b is better than the

best path from b to a. The winners of the election are the candidates with no in-edges in

this final graph, and there will always be at least one winner.

Note that a Condorcet winner will have positive net advantage edges to every other

candidate, and so they will easily have the better paths to every other candidate and be the

only winner of the election.

Example Election

Consider a Schulze election over candidates {a, b, c, d} with the following table expressing

the net advantage function.

a b c d

a 4 -2 0

b -4 4 -2

c 2 -4 6

d 0 2 -6

We can also represent this election as a graph as in Figure 2.1.

Now we must find the best paths between pairs of candidates. Note that there are several

Condorcet cycles and there is no clearly dominant candidate: Each of them lose to at least

one other candidate, and each candidate has a path to every other candidate. The following
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a b

c d

4

22
4

6

Figure 2.1: WMG for the example Schulze election. For simplicity we show edges in only
one direction, and tied contests are represented with missing edges.

are the Schulze best path scores.

a b c d

a 4 4 4

b 2 4 4

c 2 2 6

d 2 2 2

The only winner of the election will be a, as it has a stronger path to every other

candidate than those candidates have back to a.

2.1.7 Ranked-Pairs Voting

Ranked pairs is a voting system that was introduced by Nicolaus Tideman in 1987 [Tid87],

designed in part to be resistant to candidate cloning: In many voting systems, the inclusion

of several similar candidates ends up diluting their support and lessening the influence of

their supporters, and this system is less effected by these situations.

Ranked pairs is a Condorcet system with an unusually procedural winner determination

method. It works by creating a directed acyclic graph derived from the WMG for an election

and then selects the unbeaten candidate in this resulting graph as the winner. The algorithm

requires us to iterate through all the pairs of candidates in a procedure highly sensitive to

the exact ordering of the pairs, and so to rigorously define the system, we need a tie-breaking

ordering over all the unordered pairs of candidates, and also an ordering over the candidates

themselves.

The winners are determined as follows. Rank all the pairs of candidates by decreasing

WMG edge weight (considering nonzero weight edges in the direction that they are of

positive weight). Break ties between pairs of edges that have the same weight using the

given ordering of pairs of candidates. Now we proceed down the list of pairs, considering

them one at a time. We lock in a given edge if it will not create any cycles when added to
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the edges we have already locked in. Edges that will create cycles are discarded. If a pair of

candidates tie and have zero-weight edges between them, we determine the direction to set

the edge in using the tiebreaking order over candidates. After considering all of the pairs,

there will be a single source vertex with no in-edges, and this candidate will be the winner.

This version of the election system will always select a single winner.

Example Election

We will give an example using the same election as for Schulze, with the WMG as given in

Figure 2.1. We will use the a > b > c > d as our tiebreaking ordering over candidates, and

sort pairs first by the greater candidate in the pair (according to our candidate ordering) and

next by the lesser candidate. Thus our overall schedule of pairs to consider is the following:

(c, d), (a, b), (b, c), (a, c), (b, d), (a, d). These pairs have edges with weights of 6, 4, 4, 2, 2, 0,

and (a, b) is ranked before (b, c) and (a, c) is ranked before (b, d) due to the tiebreaking

ordering.

The first three pairs are locked in without incident, but the pairs (a, c) and (b, d) are

discarded to avoid cycles. Finally we consider the tied pair (a, d), and a wins due to the

candidate ordering. In the final graph, given in Figure 2.2, a is the only unbeaten candidate,

and thus is the only winner.

a b

c d

Figure 2.2: Final graph of locked-in edges for the example ranked-pairs election.

2.2 Computational Social Choice

The field of computational social choice analyzes computational issues relating to elections

and other mechanisms of social choice. Traditional social choice theory comes from eco-

nomics and political science and does not generally anticipate or investigate computational

issues with the mechanisms it develops.

However, issues of computational feasibility can hamper the usefulness of otherwise at-

tractive voting systems. For instance, determining who is a winner in Dodgson elections

(a voting system that selects a candidate that is closest to being a Condorcet winner)
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or in Kemeny elections (a voting system that produces an overall preference order of the

candidates with minimized difference between this ordering and the voter preferences) is

NP-hard [BTT89b].

Complexity can also protect voting systems from actions that subvert their democratic

intent. We know from the Gibbard-Satterthwaite Theorem that all reasonable voting sys-

tems are susceptible to manipulation, but in some voting systems it is computationally

infeasible for voters to find a way to successfully vote strategically. Thus one major track

of research in computational social choice involves analyzing the complexity of various ma-

nipulative action problems that model ways election participants or organizers can subvert

the election to change the result.

The primary classes of these problems are manipulation, where a voter or voters strate-

gically vote to affect the result of an election [BTT89a], bribery, where an outside briber

pays off voters to change their votes [FHH09], and control, where an election organizer alters

the structure of an election to change the result [BTT92].

The original versions of these problems are the constructive cases, where the goal is

to make a particular candidate win. The alternative class of problems are the destructive

cases, where the goal is to make a particular candidate not win. These were introduced

by Conitzer, Sandholm, and Lang [CSL07] in the context of manipulation and later by

Hemaspaandra, Hemaspaandra, and Rothe in the context of control [HHR07]. Though the

constructive goal may be more desirable, the destructive version of a problem may be easy

where the constructive version is not, so investigating both is useful.

There are a few standard terms for the complexity of a given manipulative action problem

in an election system.

Susceptibility A voting system is susceptible to a case of control if that action has po-

tential to affect the result of an election. That is, for a constructive case of control, there is

at least one positive instance where the distinguished candidate was not originally a winner

of the election, or for a destructive case of control, there is at least one positive instance

where the distinguished candidate was originally a winner.

Vulnerability A voting system is vulnerable to a case of control if it is susceptible to that

case, and the associated decision problem can be solved in polynomial time (that is, the

associated decision problem is in P). A voting system is vulnerable to a case of bribery or

manipulation if the associated decision problem can be solved in polynomial time. This has

a very good practical correspondence with real world efficiency of the problem, and thus the

manipulative action is computationally easy.
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Certifiable Vulnerability A voting system is certifiably vulnerable to a case of control if

it is susceptible to that case, and the associated search problem can be solved in polynomial

time. A voting system is certifiably vulnerable to a case of bribery or manipulation if the

associated search problem can be solved in polynomial time. That is, we can find the specific

action (e.g., the manipulative vote, the set of voters to add, the partition of the candidates)

that will successfully carry out the manipulative action. The original formulation of this

notion required that the algorithm find an “optimal” action [HHR07], but subsequent work

(for instance, [FHH11b, FHHR11, HHM12]) has used the broader meaning of an algorithm

providing any successful action.

Resistance A voting system is resistant to a case of control if it is susceptible to that

case, and the associated decision problem is NP-hard. A voting system is resistant to a

case of bribery or manipulation if the associated decision problem is NP-hard. The idea of

NP-hardness has a long and storied history, but for the current purposes it suffices to say

that such problems are very unlikely to have efficient general solutions barring a major shift

in our understanding of computer science.

Immunity A voting system is immune to a case of control if that action cannot affect the

result of the election. This is obviously a desirable notion but it is generally harder to come

by than resistance.

Manipulation

The manipulation problem is the most basic of the election manipulative action problems.

The manipulation problem models strategic voting, where a voter or set of voters attempt to

vote in some way (not necessarily reflecting their true preferences) to sway the result of the

election and cause their favorite candidate to win, or else to cause some hated candidate to

lose. The computational complexity of this problem was first studied by Bartholdi, Tovey,

and Trick [BTT89a]. We will now formally define the manipulation problem.

Manipulation

Given An election (C, V ), a set of manipulators M , and a distinguished candidate p.

Question (Constructive) Is there a way to assign the votes of M such that p is a winner

of the election (C, V ∪M)?

Question (Destructive) Is there a way to assign the votes of M such that p is not a

winner of the election (C, V ∪M)?
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There are other common variants of this problem as well, for instance the case where

each of the voters and manipulators has a weight that determines their level of influence in

the election.

Bribery

Election bribery, naturally, is the problem of a briber paying off voters to change their votes

in order to change the result of an election. This problem was first studied by Faliszewski,

Hemaspaandra, and Hemaspaandra [FHH09]. Bribery can be thought of as a more complex

form of manipulation where the briber first has to select a set of voters to bribe and then

assign their votes to achieve a desired result. Despite this natural characterization, there

do exist voting systems where the bribery problem is easy (in P) while manipulation is

NP-hard [FHH09]. We will now formally define the bribery problem.

Bribery

Given An election (C, V ), a distinguished candidate p ∈ C, and an integer bribing limit

k ≥ 0.

Question (Constructive) Is there a way to change the preferences of no more than k

voters in V such that p is a winner of the election with those votes thusly changed?

Question (Destructive) Is there a way to change the preferences of no more than k voters

in V such that p is not a winner of the election with those votes thusly changed?

As with manipulation there is a weighted variant, and there is additionally a priced vari-

ant where voters have individual costs to be bribed rather than all having unit cost [FHH09],

or even where some alterations to a vote are more expensive to make than others [Fal08].

Control

Control encompasses actions taken by an election chair to change the structure of an election

to achieve a desired result. This can include adding or deleting candidates or voters, or

partitioning either candidates or voters and performing initial subelections. The study of

election control was initiated by Bartholdi, Tovey, and Trick [BTT92], and many subsequent

papers have investigated the complexity of control in various voting systems [FHHR09,

HHR09, ENR09, EFPR10].

The various control problems loosely model many real-world actions. The cases of adding

and deleting voters correspond to voter registration drives and voter suppression efforts. The

cases of adding and deleting candidates correspond to ballot-access procedures that effec-

tively remove many candidates from elections. Cases of partitioning voters are similar to the
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real-world practice of gerrymandering (though that has additional geographic constraints),

and cases of partitioning candidates correspond to primary elections or runoffs.

The following definitions follow the nonunique winner model, where we claim success in

our control action when the preferred candidate is one of possibly several winners in the

election in the constructive case, or is not among the set of winners in the election in the

destructive case. In contrast, the original paper exploring control [BTT92] used the unique

winner model, where the goal is to cause a candidate to be the only winner of an election.

We include both constructive and destructive variations, following [HHR07], and define the

cases of adding candidates with an adding limit, symmetrically with the adding voters cases,

and also include the original version of the adding candidates problem as control by unlimited

adding of candidates, following [FHHR07], among others.

The unique winner versions of the problems can be easily obtained by changing the words

“a winner” to “a unique winner” in each definition.

There is an additional concern in the various control by partitioning cases, where we

may handle ties in the initial elections in different ways. In the ties-promote model, every

candidate that is a winner in an initial election is promoted to the final election, while in

the ties-eliminate model only a unique winner will be promoted to the final election, so no

candidates will be promoted from a subelection where there is a tie for winner. We will now

formally define the various cases of control.

Control by Adding Candidates

Given Disjoint candidate sets C and D, a voter set V with preferences over C ∪ D, a

distinguished candidate p ∈ C, and k ∈ N.

Question (Constructive) Is it possible to make p a winner of an election (C ∪ D′, V )

with some D′ ⊆ D where ‖D′‖ ≤ k?

Question (Destructive) Is it possible to make p not a winner of an election (C ∪D′, V )

with some D′ ⊆ D where ‖D′‖ ≤ k?

Control by Adding an Unlimited Number of Candidates

Given Disjoint candidate sets C and D, a voter set V with preferences over C ∪D, and a

distinguished candidate p ∈ C.

Question (Constructive) Is it possible to make p a winner of an election (C ∪ D′, V )

with some D′ ⊆ D?

Question (Destructive) Is it possible to make p not a winner of an election (C ∪D′, V )

with some D′ ⊆ D?
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Control by Deleting Candidates

Given An election E = (C, V ), a distinguished candidate p ∈ C, and k ∈ N.

Question (Constructive) Is it possible to make p a winner of an election (C − C ′, V )

with some C ′ ⊆ C where ‖C ′‖ ≤ k?

Question (Destructive) Is it possible to make p not a winner of an election (C − C ′, V )

with some C ′ ⊆ (C − {p}) where ‖C ′‖ ≤ k?

Control by Adding Voters

Given A candidate set C, disjoint voter sets V and W , a distinguished candidate p ∈ C,

and k ∈ N.

Question (Constructive) Is it possible to make p a winner of an election (C, V ∪W ′) for

some W ′ ⊆W where ‖W ′‖ ≤ k?

Question (Destructive) Is it possible to make p not a winner of an election (C, V ∪W ′)

for some W ′ ⊆W where ‖W ′‖ ≤ k?

Control by Deleting Voters

Given An election E = (C, V ), a distinguished candidate p ∈ C, and k ∈ N.

Question (Constructive) Is it possible to make p a winner of an election (C, V − V ′) for

some V ′ ⊆ V where ‖V ′‖ ≤ k?

Question (Destructive) Is it possible to make p not a winner of an election (C, V − V ′)

for some V ′ ⊆ V where ‖V ′‖ ≤ k?

Control by Partition of Candidates

Given An election E = (C, V ) and a distinguished candidate p ∈ C.

Question (Constructive) Is there a partition (C1, C2) of C such that p is a final winner

of the election (D ∪ C2, V ), where D is the set of candidates surviving the initial

subelection (C1, V )?

Question (Destructive) Is there a partition C1, C2 of C such that p is not a final winner

of the election (D∪C2, V ), where D is the set of candidates surviving the subelection

(C1, V )?
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Control by Runoff Partition of Candidates

Given An election E = (C, V ) and a distinguished candidate p ∈ C.

Question (Constructive) Is there a partition C1, C2 of C such that p is a final winner of

the election (D1 ∪D2, V ), where D1 and D2 are the sets of surviving candidates from

the subelections (C1, V ) and (C2, V )?

Question (Destructive) Is there a partition C1, C2 of C such that p is not a final winner

of the election (D1 ∪ D2, V ), where D1 and D2 are the sets of surviving candidates

from the subelections (C1, V ) and (C2, V )?

Control by Partition of Voters

Given An election E = (C, V ) and a distinguished candidate p ∈ C.

Question (Constructive) Is there a partition V1, V2 of V such that p is a final winner of

the election (D1 ∪D2, V ) where D1 and D2 are the sets of surviving candidates from

the subelections (C, V1) and (C, V2)?

Question (Destructive) Is there a partition V1, V2 of V such that p is not a final winner

of the election (D1 ∪ D2, V ) where D1 and D2 are the sets of surviving candidates

from the subelections (C, V1) and (C, V2)?

2.3 Parameterized Complexity

Parameterized complexity is a field that takes a more fine-grained approach to complexity

analysis. Rather than just analyzing the running time of a problem in terms of the size of

the input, in parameterized complexity it is also mapped in terms of some other parameter

to the problem. There are many options as to what can serve as a parameter, and the most

natural parameters vary based on the problem domain. In the case of problems relating to

voting, we feel the most natural parameter is the number of candidates in the input election.

We will describe a few of the key parameterized complexity classes.

Fixed Parameter Tractable A parameterized problem is fixed-parameter tractable (is

in FPT) if there is an algorithm for that problem that runs in time f(j) · nO(1), where n is

the size of the input and j is the parameter [Nie06]. That is, for every fixed value for the

parameter, the algorithm runs in uniform polynomial time, though the function f of the

parameter can grow arbitrarily. This class is in effect the parameterized analog to P, and

problems in this class are likely to be fairly efficiently solvable for small parameter values.
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W Hierarchy The W hierarchy is a hierarchy of parameterized complexity classes based

on a complex set of weighted circuit satisfiability problems [DF99]. The significance of

these classes is that the first few levels, W[1] and W[2], contain natural hard and com-

plete problems, and there are complexity-theoretic consequences if these classes collapse

to FPT. Thus we can show a problem is unlikely to be in FPT by showing it is W[1] or

W[2]-hard with a parameterized reduction from a known hard problem from one of these

classes, such as dominating set [DF95]. A parameterized reduction is similar to a standard

polynomial-time many-one reduction, except that the running time is not required to be

polynomially bounded in terms of the parameter value, and the parameter in the output

must be bounded by a function of the input parameter [DF99]. These classes are thus in a

sense the parameterized analogs to NP: Hard problems for these classes are very unlikely to

be in FPT.
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Chapter 3

Control in Schulze Voting

3.1 Introduction

Here we study Schulze voting, a new and sophisticated voting system that has become fairly

popular in recent years. We investigate its complexity under control, a class of manipulative

action problems where the election chair changes the structure of the election to affect the

result. We build on earlier work by Parkes and Xia [PX12] and further characterize the

worst-case behavior of Schulze voting under control, resolving all but three control cases.

We find that it possesses a good but not exceptional number of control resistances, fewer

than the best known natural systems. Schulze voting currently is known to possess the same

control resistances as Copelandα with α ∈ (0, 1), which was at one point the most resistant

system known that uses the standard linear vote model [FHHR09]. While it fails to stand

among the most resistant systems, the popularity of the system increases the relevance of

these results, perhaps calling into question the use of the system in contexts where these

control actions are of concern.

3.2 Schulze Voting

Schulze voting is a Condorcet voting system recently introduced by Marcus Schulze [Sch11].

It was designed in part to effectively handle candidate cloning : In many voting systems,

the inclusion of several similar candidates ends up diluting their support and lessening the

influence of their supporters. It has a somewhat more complex winner procedure than other

common voting systems, requiring the use of a graph best-path finding algorithm, but it is

still solvable in polynomial time, rendering Schulze a tractable voting system.

Schulze voting has garnered a high level of real-world use, especially in the free software
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and free culture communities. Users include several national branches of the Pirate Party,

the Wikimedia foundation, many free-software projects such as Ubuntu, Debian, Gentoo,

and KDE, and even MTV. This level of real-world usage is unusual for a new, academically

proposed and studied voting system, but it makes Schulze voting more compelling to analyze.

The winner determination method for Schulze voting is presented in Section 2.1.6.

It is obviously easily possible to construct the net advantage function given a collection

of votes, but it is interesting to note that we can easily convert in the other direction as well.

Given a net advantage function where either all the scores are even or all the scores are odd,

we can construct an equivalent set of votes in time polynomial in the number of candidates

and in the maximum magnitude of any score in the net advantage function. This method is

due to McGarvey [McG53]. We will use this method later to more easily construct elections

in the course of reductions, in order to avoid having to explicitly specify the votes.

3.3 Results

Parkes and Xia studied the complexity of the manipulative action problems for Schulze

voting [PX12]. They proved resistance for Schulze voting for bribery and for some of the

control cases, and showed that constructive manipulation for Schulze is easy with a single

manipulator. Recently, Gaspers, Kalinowski, Narodytska, andWalsh showed that coalitional

manipulation is easy as well [GKNW13]. However several control cases remained open. Our

new results are the following.

• Schulze voting is resistant to constructive control by adding an unlimited number of

candidates.

• Schulze voting is resistant to constructive control by deleting candidates.

• Schulze voting is resistant to constructive control by partition/runoff partition of can-

didates, ties promote or ties eliminate.

• Schulze voting is vulnerable to destructive control by partition/runoff partition of

candidates, ties promote or ties eliminate.

• Schulze voting is resistant to constructive or destructive control by partition of voters,

ties promote or ties eliminate.

Table 3.1 shows the behavior of Schulze voting, as well as several other voting systems

under control. We include here proofs of a selection of our results.

Theorem 3.3.1. Schulze voting is resistant to constructive control by unlimited adding of

candidates.
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Control by Tie Plurality Approval Fallback Schulze
Model C D C D C D C D

Adding Candidates R R I V R R R S
Adding Candidates (unlimited) R R I V R R R S
Deleting Candidates R R V I R R R S
Partition of Candidates TE R R V I R R R V

TP R R I I R R R V
Run-off Partition of Candidates TE R R V I R R R V

TP R R I I R R R V
Adding Voters V V R V R V R R
Deleting Voters V V R V R V R R
Partition of Voters TE V V R V R R R R

TP R R R V R R R R

Table 3.1: Control behavior under Schulze voting and other voting systems for comparison.
V, R, S, and I stand for vulnerable, resistant, susceptible, and immune. Results proved in
this work in bold, other results from [ER10, EF10b, EPR11, HHR07, PX12].

Proof. We prove this case through a reduction from 3SAT, defined as follows [GJ79].

Given A set U of variables and a collection Cl of clauses over U such that each clause

c ∈ Cl has |c| = 3.

Question Is there a satisfying truth assignment for Cl?

Given a 3SAT instance (U,Cl), we will construct a control instance (C,D, p, k) as follows.

The original candidate set C will be the following:

• The distinguished candidate p.

• An additional special candidate a.

• A candidate for each clause ci.

• For each variable xi, a candidate x′i.

• For each variable xi, a candidate x′′i .

The auxiliary candidate set D will consist of the following:

• The “literal” candidates: For each variable xi, candidates x
+
i and x−i .

The voter set V will be constructed such that we have the following relationships between

the candidates (both those in C and in D):

• For every clause ci, candidate ci beats p by 2 votes.
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• For every variable xi, candidate x
′
i beats p by 2 votes.

• For every variable xi, p beats candidate x′′i by 2 votes.

• For every variable xi, candidates x
+
i and x−i beat x′i by 4 votes.

• For every variable xi, x
′′
i beats x−i , x

−
i beats x+i , and x

+
i beats p, all by four votes.

• For every variable xi, candidates x
+
i beats every clause candidate ci where the corre-

sponding clause is satisfied by xi assigned to true, by 4 votes.

• For every variable xi, candidates x
−
i beats every clause candidate c where the corre-

sponding clause is satisfied by xi assigned to false, by 4 votes.

• p beats a by 4 votes.

• For every variable xi, a beats candidates x+i and x−i by 4 votes.

We will show that p can be made a winner through adding candidates if and only if there

is a satisfying assignment for the 3SAT instance.

Given a satisfying assignment for the 3SAT instance, build the corresponding set of added

candidates, where x+i is included if xi is set to true, and x−i is included otherwise. We can

show that p will be a winner with this set of candidates added. Since these candidates

correspond to a satisfying assignment, and every literal candidate x+i or x−i beats by 4

every clause candidate they satisfy, and since p has a strong path to each literal candidate

(through a), there will be a strong path from p to each clause candidate ci, stronger than

the strength-of-2 edge from ci to p. Since we have added exactly one of x+i , x
−
i for each

xi, we create a strong path from p to the x′i candidate, and we prevent there from being a

strong path from x′′i to p, as such a path would have to go through both of those candidates.

Thus no candidate will have a better path to p than p has to that candidate, so p will be a

winner.

We will show that if we map to a positive control instance, we must have mapped from a

satisfiable 3SAT instance. To make p a winner of the election, we must ensure p’s paths to

other candidates are at least as strong as other candidates’ paths to p. p immediately has

strong paths to any of the added literal candidates. To beat each of the clause candidates

we must add literal candidates that give p a path to each of them. To beat the x′i candidates

we must add at least one of x+i or x−i for each xi. To beat the x′′i candidates we must not

add both of x+i and x−i for each xi. Thus to have a successful control instance, we must

set every variable to one of true or false in such a way that satisfies each clause. Thus if we

have a positive control instance we must have a positive 3SAT instance.

Theorem 3.3.2. Schulze voting is resistant to constructive control by deleting candidates.
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Proof. We prove this case through a reduction from 3SAT. Given a 3SAT instance (U,Cl)

we will construct a control instance ((C, V ), p, k) as follows. Our deletion limit k will be

equal to ||Cl||. The candidate set will be the following:

• Our special distinguished candidate p.

• For each clause ci ∈ Cl, k + 1 candidates c1i , . . . , c
k+1
i .

• A candidate for each literal xji in each of the clauses (where xji is the jth literal in the

ith clause).

• For each pair of literals xji , x
n
m where one is the negation of the other, k+1 candidates

n1i,j,m,n, . . . , n
k+1
i,j,m,n.

• An additional auxiliary candidate a.

The k + 1 candidates for each clause and for each conflicting pair of literals are treated

as copies of each other, and are included to prevent successful control by simply deleting

the tough opponents rather than solving the tricky problem corresponding to the 3SAT

instance.

The voters will be constructed according to the McGarvey method [McG53] such that

we have the following relationships between candidates.

• For the three literal candidates x1i , x
2
i , x

3
i in a clause ci, c

j
i beats x

1
i (for all j), x1i beats

x2i , x
2
i beats x3i , and x

3
i beats p, all by two votes.

• For a pair of literal candidates xji and xnm that are negations of each other, each beats

nli,j,m,n (for all l) by two votes.

• Every negation candidate nli,j,m,n beats p by two votes.

• p beats a by two votes.

• a beats every xji by two votes.

This completes the specification of the reduction, which clearly can be performed in

polynomial time. The intuition is as follows: Deleting a literal corresponds to assigning

that literal to be true, and to make p win we must “assign” literals that satisfy every

clause without ever “assigning” a variable to be both true and false, so a successful deletion

corresponds to a valid satisfying assignment.

We will now show that if (U,Cl) is a positive 3SAT instance, p can be made a winner of

this election by deleting k candidates. We will delete one literal candidate for each clause,

selecting a literal that is satisfied by the satisfying assignment for Cl. This will require us to
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delete ||Cl|| candidates, which is equal to our deletion limit k. By deleting these candidates,

we break all the paths from the clause candidates to p, so now p is tied with each clause

candidate instead of being beaten by them. Also, since we deleted literals that were satisfied

according to a satisfying assignment, we must not have deleted any pair of literals that were

the negations of each other, so we will still have a path from p to each negation candidate.

Thus p at least ties every other candidate in Schulze score, so they will be a winner.

If we map to a positive control instance, our 3SAT instance must be positive as well.

First, the most serious rivals to p are the clause candidates, who each have a path of strength

two to p while p only has a path of strength 0 to them. Since there are many duplicates of

each of them, we cannot remove them directly but must instead remove other vertices along

the paths to p to remove the threat. The deletion limit allows us to delete one candidate

for every clause. However we must choose which ones to delete carefully, as if we delete

a literal and a different one that is the negation of the first, we destroy our only paths

to the corresponding negation candidate. Thus we must delete one literal for each clause,

while avoiding deleting a variable and its negation. If there is a successful way to do this,

there will be a satisfying assignment for the input instance that we can generate using our

selection of deleted/satisfied literals (arbitrarily assigning variables that were not covered

in this selection).

Theorem 3.3.3. Schulze voting is resistant to constructive control by partition and runoff

partition of candidates, ties eliminate.

Proof. We will reduce from 3SAT. Given a 3SAT instance (Cl, U), we construct a control

instance ((C, V ), p). The candidate set C will consist of the following.

• The distinguished candidate p.

• For every variable xi ∈ U , candidates x+i , x
−
i , and x

′
i.

• For every clause ci ∈ Cl, a candidate ci.

• Adversary candidates c′ and u′.

• Helper candidates a and a′.

The relationships between candidates will be as follows.

• Every clause candidate c beats p by 4 votes.

• Every clause candidate c beats a by 4 votes.

• c′ beats p by 2 votes.
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• c′ beats a by 4 votes.

• u′ beats p by 4 votes.

• a beats a′ by 4 votes.

• a′ beats every x+i and x−i by 4 votes.

• p beats every x+i and x−i by 2 votes.

• c′ beats u′ by 2 votes.

• c′ beats every ci by 2 votes.

• u′ beats every x′i by 4 votes.

• For every xi, x
′
i beats x

−
i , x

−
i beats x+i , and x

+
i beats a, all by 4 votes.

• a beats u′ by 2 votes.

• For every variable xi, candidates x
+
i beats every clause candidate ci where the corre-

sponding clause is satisfied by xi assigned to true, by 4 votes.

• For every variable xi, candidates x
−
i beats every clause candidate c where the corre-

sponding clause is satisfied by xi assigned to false, by 4 votes.

We will show that p can be made a winner of (C, V ) through control by partition (or

runoff partition) of candidates if and only if (U,Cl) is a positive instance of 3SAT.

Assume that (U,Cl) is a satisfiable 3SAT instance. Then consider the partition of the

candidates with the first partition (the one that undergoes the initial election in the non-

runoff case) containing the x+i and x−i candidates corresponding to the satisfying assignment,

and also all other candidates except p. We will show that no candidates will be promoted

from this first subelection, and p will win the final election. Since we have x+i and x−i

candidates corresponding to a satisfying assignment, there is a strong path from a to every

clause candidate ci. One of each of x+i and x−i is not present for every xi, breaking potential

paths from x′i candidates to a. The overall effect is that a will be a winner, along with c′ and

a number of other candidates, and since we are in the ties-eliminate model, no candidates will

be promoted from this subelection. Depending on whether we are in the partition or runoff

partition case, p either faces the remaining candidates (the unchosen variable assignment

candidates) in an initial subelection or in the final election, and they will win.

Assume that we map to an accepting instance of the control problem. We will show

that there must be a satisfying assignment for the 3SAT instance. p only beats the variable

assignment candidates and a, and only narrowly. p can’t survive an election that contains
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any of the other candidates, so we must eliminate them in an initial subelection. c′ has a

path to every candidate of strength 2, and no other candidate has a path to them of greater

than strength 2, so they will invariably be a winner of any subelection of which they are

a part. So the only way to eliminate them is to force a tie in an initial subelection. a

has potential to tie c′, but to do so we have to give them a strong path to every clause

candidate, and ensure there are no paths from any of the x′ candidates. Thus we need

to include variable assignment candidates satisfying each clause, but not include both the

x+ and x− candidates for any x. So if control is possible, there must be a valid satisfying

assignment for the 3SAT instance.

Theorem 3.3.4. Schulze voting is resistant to constructive control by partition and runoff

partition of candidates, ties promote.

Proof. In the ties-promote case we can use a similar reduction to the previous case. In this

version, we alter the candidate set and net advantage scores so that the helper candidate

a can be made a unique winner of their subelection if and only if there is a satisfying

assignment, and p can only win the final election if a is a unique winner of a subelection.

The candidate set is as follows. Compared to the previous case, we have eliminated the

adversary candidates c′ and u′. They were important previously to ensure that there was a

unique winner other than a in any subelection not corresponding to a satisfying assignment,

but in this case they are not necessary.

• The distinguished candidate p.

• For every variable xi ∈ U , candidates x+i , x
−
i , and x

′
i.

• For every clause ci ∈ Cl, a candidate ci.

• Helper candidates a and a′.

The new scores will be as follows.

• p beats a by 2 votes.

• Every clause candidate c beats p by 4 votes.

• Every clause candidate c beats a by 4 votes.

• a beats a′ by 6 votes.

• a′ beats every x+i and x−i by 6 votes.

• a′ beats every x′i by 2 votes.
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• p beats every x+i and x−i by 2 votes.

• For every xi, x
′
i beats x

−
i , x

−
i beats x+i , and x

+
i beats a, all by 4 votes.

• For every variable xi, candidates x
+
i beats every clause candidate ci where the corre-

sponding clause is satisfied by xi assigned to true, by 6 votes.

• For every variable xi, candidates x
−
i beats every clause candidate c where the corre-

sponding clause is satisfied by xi assigned to false, by 6 votes.

If we map from a positive 3SAT instance we must have a positive control instance.

The partition can be as follows: In the first partition include a, a′, variable assignment

candidates corresponding to a satisfying assignment, and every ci and x′ candidate. The

other partition will contain just p and the remaining variable assignment candidates. In the

first subelection, a will be the only winner, as they will have strong paths to all the clause

candidates and no candidate has a strong path to them. p will win the final election with a

and possibly also with some variable assignment candidates (in the nonrunoff case)

If we map to a positive control instance we must have a satisfiable 3SAT instance. Since

we are working in the TP model, at least one candidate will survive each subelection. The

only candidates that p beat are a and the variable assignment candidates (by only a narrow

margin), so to win we must use a to eliminate any candidates that beat p in a subelection.

Thus we have to make sure that a is a winner of their subelection, and no other candidate

that beats p is a winner. For this to happen a must have a strong path to every clause

candidate and none of the x′ candidates can have strong paths back to a. We must include

a valid satisfying assignment of variable assignment candidates for this to be the case, so

we must have a satisfiable formula.

Theorem 3.3.5. Schulze voting is resistant to constructive control by partition of voters,

ties eliminate.

Proof. We will reduce from a 3SAT instance (U,Cl) and output a control instance

((C, V ), p). The candidate set C will be as follows:

• A distinguished candidate p.

• A candidate ci for every clause ci ∈ Cl.

• A candidate xi for every variable xi ∈ U .

• An auxiliary candidate a.

The voter set V will be as follows.
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• For each variable xi, where D is the set of clauses satisfied by xi assigned to true, a

voter ranking p over ci for ci ∈ D and cj over p for cj /∈ D, ranking xi over p, but

ranking p over xj for xj ∈ U − {xi}, and ranking p over a.

• For each variable xi, where D is the set of clauses satisfied by xi assigned to false, a

voter ranking p over ci for ci ∈ D and cj over p for cj /∈ D, ranking xi over p, but

ranking p over xj for xj ∈ U − {xi}, and ranking p over a.

• ||U || − 3 voters preferring p over every ci, but preferring every xi and a over p.

• 1 voter preferring p over every ci and over a, but preferring every xi over p.

• 2 voters preferring p over every ci and xi but with a preferred over p.

Unspecified portions of the votes (the relative rankings of the clause candidates and of

the variable candidates) will be set according to the McGarvey method [McG53] to equalize

as much as possible the pairwise contests between these candidates.

If we are mapping from a positive 3SAT instance, it will be possible to make p win

the final election through this type of control. The partition will be as follows: The first

partition will contain all of the third, fourth, and fifth groups of voters, and will contain

voters from the first two groups corresponding to a satisfying assignment. The result of

adding the voters from the third, fourth, and fifth groups will be to give p ||U || votes over

each ci, each xi ||U || − 4 votes over p, and a ||U || − 2 votes over p. By adding the variable

assignment voters corresponding to the satisfying assignment, we decrease every p-ci edge

by no more than ||U ||−2, increase every p-xi edge by ||U ||−2, and increase the p-a edge by

||U ||. The result is that we boost p over a and over the variable candidates while preserving

the paths from p to the clause candidates. Thus p will beat every candidate and win their

subelection. In the other subelection, with the remaining variable assignment candidates, p

will tie with some of the clause candidates (unless the inverse assignment is also satisfiable)

and so no candidates will be promoted. p will thus be alone in the final election and will

win.

If we map to a positive control instance, the mapped-from 3SAT instance will be satis-

fiable. No voter prefers p outright, so we must balance their votes against the other voters

to have a chance. The voters in the first two groups prefer p over a and they mostly prefer

p over the variable candidates, but they mostly prefer the clause candidates over p. The

voters in the third, fourth, and fifth groups can boost p over the clause candidates, but they

give a and the variable candidates an advantage over p. To make p the only winner of a

subelection, we have to carefully select the voters from the first two groups to keep p ahead

of both the variable and clause candidates. To do so we must ensure that at least one voter

prefers p over each ci, forcing the corresponding assignment to satisfy every clause, and
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that only one voter prefers each xi over p, forcing the corresponding assignment to assign

each variable as either “true” or “false” but not both. These voters thus correspond to a

satisfying assignment, so the 3SAT instance must be satisfiable.

Theorem 3.3.6. Schulze voting is resistant to constructive control by partition of voters,

ties promote.

Proof. This case can be shown through a reduction from 3SAT very similar to the previous

case. We will map from a 3SAT instance (U,Cl) to a control instance ((C, V ), p). We will

have the following candidate set C:

• A distinguished candidate p.

• A candidate ci for every clause ci ∈ Cl.

• A candidate xi for every variable x ∈ U .

• An auxiliary candidate a.

The voter set V will be the following:

• For each variable xi, where D is the set of clauses satisfied by xi assigned to true, a

voter ranking p over ci for ci ∈ D and cj over p for cj /∈ D, ranking xi over p, but

ranking p over xj for xj ∈ U − {xi}, and ranking p over a.

• For each variable xi, where D is the set of clauses satisfied by xi assigned to false, a

voter ranking p over ci for ci ∈ D and cj over p for cj /∈ D, ranking xi over p, but

ranking p over xj for xj ∈ U − {xi}, and ranking p over a.

• ||U || − 1 voters preferring p over every ci, but preferring every xi and a over p.

• 1 voter preferring p over every ci but with a and every xi preferred over p.

• ||U || + 2 voters preferring a over the variable assignment candidates over the clause

candidates over p.

Relative to the last case we have just changed the later groups of voters and left the

variable assignment voters the same. Now, with just the third and fourth groups of voters

present a has ||U || votes over every ci and ||U || − 2 votes over every xi, and a has ||U || − 2

votes over p. This proof can proceed similarly to the previous case, but noting that now

we are in the TP model, multiple candidates can be promoted to the final election, so we

must ensure that no candidates that can beat p with the entire voter set will make it. Thus

to make p a winner we must cause them to at least tie the xi and a candidates, and cause
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them to beat the ci candidates in the first round. For this to happen we must include in

a partition voters corresponding to a satisfying assignment, as well as the third and fourth

groups of voters. In the other partition we must prevent any of the clause candidates from

winning, and this will happen with the remaining variable assignment voters and the fifth

group of voters: a will be the only winner. Thus p will end up being a winner of the final

election.

If we have a positive control instance, p must be a winner of at least one initial subelec-

tion, and so this partition must have balanced the points p gets over the clause candidates

from the third and fourth groups with the points p gets over the variable candidates and a

from the first two groups, and the voters from the first two groups must have been carefully

chosen so at least one of them has p over each clause candidate, and no more than one has

each variable candidate over p. Thus there must be a satisfying assignment for the 3SAT

instance.

Theorem 3.3.7. Schulze voting is resistant to destructive control by partition of voters,

ties eliminate.

Proof. We will reduce from a 3SAT instance (U,Cl) and construct a control instance

((C, V ), p). The candidate set C will be as follows:

• The distinguished candidate p.

• The adversary candidates a and b.

• Candidates ci and c
′
i for each clause ci ∈ Cl.

• Candidates xi and x
′
i for each variable xi ∈ U .

The voter set V will be as follows:

• For each variable xi, where D is the set of clauses satisfied by xi assigned to true, a

voter ranking c′i over ci for ci ∈ D and cj over c′j for cj ∈ Cl −D, ranking x′i over xi,

but ranking xj over x
′
j for xj ∈ U−{xi}, ranking p over a and b, the clause candidates

over a and the variable candidates over b.

• For each variable xi, where D is the set of clauses satisfied by xi assigned to false, a

voter ranking c′i over ci for ci ∈ D and cj over c′j for cj ∈ Cl −D, ranking x′i over xi,

but ranking xj over x′j for xj ∈ U −{x}, ranking p over a and b, the clause candidates

over a and the variable candidates over b.

• 2||U || − 2 voters ranking a > p > b, with the other candidates evenly distributed.

• 2||U || − 2 voters ranking b > p > a, with the other candidates evenly distributed.
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The unspecified parts of the votes should be set to make the groups of candidates as

even as possible, except for the c′i candidates, among whom there should be strong paths

from each candidate to each candidate.

If the mapped-from 3SAT instance is satisfiable, we will be able to defeat p through

partition of voters. The partition we use will be the following. The first part will consist

of voters from the first two groups corresponding to a satisfying assignment, and the voters

from the third group. The second part will consist of the remaining voters from the first

two groups, and the voters from the fourth group. a will defeat p in the first partition. By

selecting the voters to correspond to a satisfying assignment we weaken all of the paths from

p to a going through the clause candidates to be ||U || − 2 in strength. The third group of

voters provide support for a over p, bringing the a→ p edge to be ||U ||−2 in strength. Thus

a ties p, and no candidate will be promoted from this subelection. In the other subelection,

b will tie p for similar reasons, as they will have an edge of ||U || − 2 to p while that will also

be the strength of the best path from p to b going through any of the variable candidates.

Thus no candidate makes it to the final election and control is successful.

If the mapped-to control instance is positive, we must have a positive 3SAT instance.

p will win the final election against any other candidate if they make it there, so to defeat

them we must make them lose both initial subelections. No voters rank p below both a and

b, the strongest other candidates, so we must defeat p with a in one subelection and defeat

p with b in the other. To make b beat p, we have to include the fourth group of voters, the

only voters that rank b over p. b would defeat p if we include just these voters, but then

p would win the other subelection with the support of all the variable assignment voters.

Thus we have to include half the variable assignment voters to give a a chance as well, and

we must pick voters to weaken the paths from p to b. This will require us to pick only one

voter corresponding to each variable. The other subelection will proceed similarly, but we

will have to pick at least one voter satisfying each clause to weaken the p-a paths. Thus

there must be a valid satisfying assignment for the 3SAT instance if control is possible.

Theorem 3.3.8. Schulze voting is resistant to destructive control by partition of voters,

ties promote.

Proof. This case can proceed very similarly to the previous case in the TE model, except that

we just have to slightly change some of the numbers so that the adversary candidates each

will fully defeat rather than tie with p in order to eliminate p from both initial subelections.

The new voters will be as follows, and everything else can proceed in the same way. We will

just give the new voter set specification here.

• For each variable xi, where D is the set of clauses satisfied by xi assigned to true, a

voter ranking c′i over ci for ci ∈ D and cj over c′j for cj ∈ Cl −D, ranking x′i over xi,
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but ranking xj over x
′
j for xj ∈ U−{xi}, ranking p over a and b, the clause candidates

over a and the variable candidates over b.

• For each variable xi, where D is the set of clauses satisfied by xi assigned to false, a

voter ranking c′i over ci for ci ∈ D and cj over c′j for cj ∈ Cl −D, ranking x′i over xi,

but ranking xj over x
′
j for xj ∈ U−{xi}, ranking p over a and b, the clause candidates

over a and the variable candidates over b.

• 2||U || voters ranking a > p > b, with the other candidates evenly distributed.

• 2||U || voters ranking b > p > a, with the other candidates evenly distributed.

Theorem 3.3.9. Schulze voting is vulnerable to destructive control by partition of candi-

dates and destructive control by runoff-partition of candidates in either the ties-promote or

ties-eliminate model.

Schulze voting is vulnerable to each of the variants of destructive control by partition of

candidates. That is, to destructive control by partition of candidates, ties promote; destruc-

tive control by runoff partition of candidates, ties promote; destructive control by partition

of candidates, ties eliminate; and destructive control by runoff partition of candidates, ties

eliminate. We will show this, and additionally show that these problems are easy for a broad

class of Condorcet voting systems.

In the nonunique-winner model that we are following here, both of the pairs destructive

control by partition of candidates, ties eliminate and destructive control by runoff partition

of candidates, ties eliminate; and destructive control by partition of candidates, ties promote

and destructive control by runoff partition of candidates, ties promote are in fact the same

problems, that is, the same sets. This fact was discovered by Hemaspaandra, Hemaspaan-

dra, and Menton ([HHM12], also presented in Chapter 6 of this thesis) by noting shared

alternative characterizations of these problems. The nominal difference is that in the “par-

tition of candidates” case, the candidate set is partitioned and only one part undergoes a

culling subelection while the other part gets a bye, while in the “runoff partition of can-

didates” case, both parts of the partition first face a subelection. In truth they are much

simpler problems, and identical (within the same tie-handling model). Namely, the sets

DC-PC-TE and DC-RPC-TE are equivalent to the set of instances ((C, V ), p) where there

is some set C ′ ⊆ C with p ∈ C ′ such that p is not a winner of the election (C ′, V ). The sets

DC-PC-TP and DC-RPC-TP are equivalent to the set of instances ((C, V ), p) where there

is some set C ′ ⊆ C with p ∈ C ′ such that p is not a unique winner of the election (C ′, V ).

We will build algorithms for these cases aided by these characterizations.



www.manaraa.com

40

These algorithms are optimal in a class of voting systems that are Condorcet voting

systems that also possess a weaker version of the Condorcet criteria—where if there are any

candidates that do no worse than tying in pairwise contests with other candidates (known as

weak condorcet winners), they will be winners (possibly, but not necessarily unique) of the

election. There can potentially be one or more than one such candidates. Schulze voting is

such a voting system: If a candidate is a weak Condorcet winner, doing no worse than tying

against any other candidate, no candidate can have a path to that candidate of strength

greater than 0, and since that candidate at least ties every other candidate, he or she has a

path of strength at least 0 to every other candidate. Thus he or she is unbeaten in Schulze

score, and will be a winner.

Other Condorcet voting systems that possess this property include Copeland1, minimax,

and ranked pairs.

First we will handle the DC-PC-TP/DC-RPC-TP case.

Proof. Recall our alternate characterization for these problems, that the set of positive

instances is the same as the set of instances ((C, V ), p) where there is some set C ′ ⊆ C

with p ∈ C ′ such that p is not a winner of the election (C ′, V ). Thus, finding if we have

a positive instance is very similar to the problem of finding if we have a positive instance

in the destructive control by deleting candidates problem, except that there is no longer a

limit on the number of candidates we can delete. Thus we do not have to carefully limit the

number of deleted candidates, but we can freely delete as many candidates as necessary to

put p in a losing scenario.

Given a control instance ((C, V ), p), all we must do is see if there is any candidate a ∈ C,

a 6= p, such that netadv(a, p) > 0. If such a candidate exists, we let our first partition be

{a, p} and let the second be C−{a, p}. p will lose their initial election to a, and be eliminated

from the election. If there is no such candidate, p is a weak Condorcet winner, and thus they

will always be a winner of the election among any subset of the candidates, as they will be a

weak Condorcet winner (at least, or possible a Condorcet winner) among any subset of the

candidates. Thus our algorithm will indicate failure. We can perform this check through

a simple examination of the net advantage scores which can be generated from an election

in polynomial time, and so this algorithm runs in polynomial time. Thus Schulze voting

(and any other system meeting the aforementioned criteria) is vulnerable and constructively

vulnerable to DC-PC-TP/DC-RPC-TP.

Now we will handle the DC-PC-TE/DC-RPC-TE case.

Proof. These cases have the alternate characterization that the set of positive instances is

equivalent to the set of instances ((C, V ), p) where there is some set C ′ ⊆ C with p ∈ C ′
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such that p is not a unique winner of the election (C ′, V ), that is, there are multiple winners,

or no winners, or there is a single winner that is not p. This case thus differs only slightly

from the DC-PC-TP/DC-RPC-TP case and we can create a very similar simple algorithm.

Given a control instance ((C, V ), p), we can find a successful action if one exists by simply

checking if there is any candidate a ∈ C, a 6= p, such that netadv(a, p) ≥ 0. If so, we let

our first partition be {a, p} and let the second be C − {a, p}. This results in p either not

being a winner of the subelection at all or being a winner along with a if the net advantage

score is 0. Either way, p will not be promoted to the final election and thus they will not be

a winner of the final election. If there is no such candidate, p is a Condorcet winner, and

they will be a Condorcet winner among any subset of the candidates, so this type of control

will never be possible, and our algorithm will indicate that. As before, generating the net

advantage function is easily possible in polynomial time, and the simple check will only

take polynomial time, so Schulze voting (and any other system meeting the aforementioned

criteria) is vulnerable and constructively vulnerable to DC-PC-TE/DC-RPC-TE.

For the final cases of control, we do not resolve their complexity, but we do reduce the

problems to their core: They are no harder than a simpler problem called path-preserving

vertex cut.

Proposition 3.3.10. Each of destructive control by adding candidates, destructive control

by unlimited adding of candidates, and destructive control by deleting candidates in Schulze

voting polynomial-time Turing reduces to path-preserving vertex cut.

Proof. We define path-preserving vertex cut as follows.

Given A directed graph G = (V,E), distinct vertices s, t ∈ V , and a deleting limit k ∈ N.

Question Is there a set of vertices V ′, ||V ′|| ≤ k, such that the induced graph on G with

V ′ removed contains a path from t to s but not any path from s to t?

We note that the standard vertex cut problem is well-known to be solvable in polynomial

time, but to the best of our knowledge the complexity of this variant is unknown (other than

that it is clearly in NP). Given this result, Schulze voting will be vulnerable to each of these

control cases if this problem is found to be in P.

We will describe how these control cases can reduce to this problem, first handling the

DC-DC case. Our input will be a DC-DC instance ((C, V ), p, k). Since this destructive case

of control, we only have to make the distinguished candidate p not a winner rather than

making any particular candidate positively a winner. To do this we must alter the election

so that some other candidate has a better path to p than p has to that candidate. Since

this is a case of control by deleting candidates, we can only eliminate paths in the election
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graph, not create them. So we have to try to succeed by breaking the paths from p to some

other candidate.

We can first handle the cases where p is a Condorcet winner (control will be impossible)

or where p is already beaten by some candidate (control is trivial). Otherwise, we will loop

through the candidates and see if we can make any of them beat p.

For each candidate a, we will first find the subgraph containing all maximum-strength

paths to p (using a modified Floyd-Warshall algorithm), and also the subgraph containing all

paths from p to a at least as strong as the strongest a-p path. We will then take the union of

these graphs, disregard the edge weights, and apply a subroutine for path-preserving vertex

cut. This will tell us if there is any way to cut all of the strong paths from p to a while

preserving one of the strongest ones from a to p. If we ever get a positive result from this

call, we can indicate success. Now, it may be that we can succeed by preserving a path

other than the strongest path from a to p. So if we failed, we repeat the process except

considering paths from a to p and from p to a that are a little less strong, going down as far

as the strength of the p-a edge (which is not cuttable). This loop is polynomially bounded

in the number of edges, as there can only be as many path strengths as there are edges. We

indicate failure if we never achieve success with any vertex or path strength.

The other cases can be handled similarly. The difference is that they are adding-

candidates problems instead of deleting-candidates problems, but we can reduce them to

modified deleting-candidates problems by including all of the addable vertices and then

solving them as deleting-candidates problems where we can only delete the vertices in the

added sets. Additionally, in the non-unlimited case, we would be restricted as to how many

of the vertices are added, so we would have to only look at paths from a to p that use a

limited number of the added vertices.

3.4 Conclusions

We found that Schulze voting resists every case of constructive control and several cases

of destructive control, but it is vulnerable to several cases as well. These results may be

of interest to some of the system’s many users, especially those concerned with candidate

control. There are still several open questions relating the complexity of manipulative ac-

tions in Schulze voting. Our unresolved control cases are of course of interest, and they may

be resolved through development of a polynomial-time algorithm for the path-preserving

vertex cut problem.
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Chapter 4

Parameterized Complexity in

Schulze Voting and Ranked

Pairs

4.1 Introduction

In this chapter we study the parameterized complexity of manipulative actions in Schulze

and ranked-pairs voting. We find that every standard manipulative action in those voting

systems, even those previously found to be NP-hard, is fixed-parameter tractable (FPT)

when parameterized on the number of candidates. Parkes and Xia [PX12], followed by

Menton and Singh ([MS13], also presented in Chapter 3 of this thesis) studied the classi-

cal worst case complexity of manipulative actions in these voting systems, finding many

problems to be NP-hard. This work implies that such problems are not as hard as previ-

ously thought when we have a small number of candidates, and that the difficulty of these

problems depends in an essential way on the number of candidates.

The structure of our proofs is that we define a structure that allows us to brute-force

search over possible strategies of action, and then for every possible strategy, we embed

the problem of trying to achieve it in an integer linear programming feasibility problem

(ILPFP). We can then solve each of these problems using Lenstra’s algorithm, which achieves

polynomial-time performance with a fixed number of variables [Len83].

The end result is an algorithm that runs in polynomial time, with a fixed polynomial, for

every fixed number of candidates, though with large and growing constants for increasing

numbers of candidates. This approach may not construct practically efficient algorithms,
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but it does achieve the goal of placing these problems in FPT. Our proofs of this type are

given in Section 4.3.

Additionally, we push our approach further by handling weighted cases of manipulation

and bribery in Section 4.5. And we show our results obtained through other techniques in

Section 4.4.

4.2 Presentation of Key Idea

We will now describe the key idea of this work and the key tool with which we achieve

our results. What we need is a structure that can express a claim about the winner set

of a Schulze or ranked-pairs election, and the strategy that went towards achieving that

winner set, but where the number of such structures is bounded in terms of the number of

candidates. And additionally we must be able to embed such a structure and the task of

trying to achieve it in an integer linear program with a fixed number of variables for a fixed

number of candidates.

Both Schulze and ranked pairs are Condorcet voting systems where the winners are de-

termined using information from the weighted majority graph. So naturally we will try

to express who are the winners using information about the WMG. But several natural

approaches will not work. Expressing a claim about the winner set using information about

what candidate wins each pairwise election, as was done by Faliszewski, Hemaspaandra,

Hemaspaandra, and Rothe in Copeland voting [FHHR09], is not workable as that informa-

tion is not enough to determine the winners in Schulze or ranked-pairs elections. Expressing

a claim about the winner set using information about the specific weight of each edge in

the WMG is not workable, as even with a bounded number of candidates there are an un-

bounded number of possible edge weights, so the number of such structures would not be

appropriately bounded.

Our structures fall somewhere in between these approaches. We express our claims

using information about the relative strength of edges in the WMG. This gives us enough

information to determine the winners in either Schulze or ranked-pairs elections, and also

the number of structures we must create is bounded in both systems.

We will now say more about what actually goes into these structures, first in the case of

Schulze (defined in Section 2.1.6). A Schulze Winner-Set Certification Framework (SWCF)

is a structure that makes a claim about who the winners of a given election are, and also

claims what specific path to victory those candidates took. Since the winners in a Schulze

election are determined through analyzing paths in the WMG, an SWCF will make claims

about some of those paths. Namely, for every candidate a in the winner set, an SWCF will

describe a best path from a to every other candidate, and for every candidate b not in the
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winner set, it will describe a path that causes some other candidate to strictly b. To build

our algorithms we embed these SWCFs into ILPFPs that model the task of trying to achieve

them. The SWCF gives a story of how some particular set of candidates could become the

winners, and then the ILPFP is given the task of solving the manipulative action problem

in a particular way in line with the SWCF.

This structure meets all our requirements. First, the information in this structure is

enough to claim what candidates are the winners in the election. Second, the number of

such structures is large but bounded with a fixed number of candidates, as the number of

simple paths through the WMG is bounded in the number of candidates. And third, we

can embed this structure in an ILPFP. The key observation that allows the embedding is

that we can assert that a particular path is a strong path through a series of inequalities

between the weights of edges. An ILPFP can be built in terms of Bigger and StrictlyBigger

relations between pairs of edges, stating non-strict and strict inequalities between those

edges. Namely, to claim that a particular path from a to b allows a to at least tie b (as must

be the case for every b if a is a winner), we claim that every edge in that path is at least as

strong as some edge in every path from b to a. To claim that a particular path from a to

b allows a to strictly beat b (and thus b is not a winner), we claim that every edge in that

path is strictly stronger than some edge in every path from b to a. Thus we can implement

an SWCF in terms of strict and non-strict inequalities between edges, which can be handily

implemented in a linear program. We will describe the details of this in the next section.

A Ranked-Pairs Winner-Set Certification Framework (RPWCF) is the analogous struc-

ture for ranked-pairs elections (defined in Section 2.1.7). Ranked-pairs elections, unlike

Schulze elections, are highly sequential in nature. Such a system is less natural to embed in

a system of constraints, but the great flexibility of linear programming and the amount of

work we can do with a fixed number of candidates allows us to succeed.

The RPWCF will in effect “tell a story” about the evaluation of the procedural winner

determination method. It will consist of the schedule of locked-in edges through the opera-

tion of the ranked-pairs election, both the order in which the edges are considered, and the

direction in which they are set (or whether they are discarded due to transitivity). The total

number of such schedules is large but again bounded in terms of the number of candidates,

and through the locked-in edges we can determine what candidate is selected as the winner

(note that in our formulation of ranked pairs there is always exactly one winner). To build

these structures we need both our input election as well as the ranked pairs tiebreaking

orderings over the candidates and over the pairs of candidates (described in Section 2.1.7)

Like with Schulze, we can implement an ILPFP enforcing an RPWCF in terms of in-

equalities between edges. The RPWCF makes claims about the order edges are considered

in and how they are set, and we can enforce these claims with inequalities. Namely, if an
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edge (a, b) is considered at some point in time, it must be at least as strong as all other

edges that follow it in the ordering, and it must be strictly stronger than edges that follow

it that are ahead of (a, b) in the edge tiebreaking ordering. So like with Schulze we can

enforce these constraints in terms of Bigger and StrictlyBigger terms. And then if the RP-

WCF claims that the edge is set in the direction a → b, we must enforce either that the

edge (a, b) has positive weight, or that (a, b) has weight 0 and a beats b in the candidate

tiebreaking ordering. So we also need to enforce a three-way constraint about the direction

of each edge, whether it points in one direction or the other or whether it has zero weight.

These constraints can easily be built in terms of inequalities as the other constraints. Thus

as with Schulze we can embed the framework into an ILPFP, as long as we can implement

inequalities between WMG edge weights in the ILPFP. We will demonstrate how this is

accomplished for the various manipulative actions in the following sections.

4.3 Results by Looping over Frameworks

We now present our results that are established by our looping-over-frameworks idea. We

will handle in separate sections manipulation, bribery, and control, showing how to achieve

FPT results for each. The first section, on manipulation, will be given in more detail so as

to ease the reader into the proof structure that the remainder of these proofs will follow.

4.3.1 Manipulation Results

Theorem 4.3.1. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, manipulation is in FPT with respect to the number of candidates, in both the

succinct and nonsuccinct input models, for both constructive and destructive manipulation,

and in both the nonunique-winner model and the unique-winner model.

Proof. We will assume without loss of generality that the candidates in the manipulation

problem are 1, . . . , j with the distinguished candidate being 1 (thus j is also the number

of candidates). This does not affect the workings of either of the voting systems we are

concerned with here, and it simplifies the construction of the ILPFP. The rest of the input

to the manipulation problem will be the voter set V , either given as a list of votes in

the standard nonsuccinct version, or as a list of which types of votes occur at least once,

along with the multiplicities of each in the succinct version, and the manipulator set M .

Algorithm 2 specifies the top-level loop for this algorithm, looping over all possible WCFs

and considering those that satisfy the particular goal we are interested in.

So now we need to specify how to implement the WCF-enforcing ILPFP for either Schulze

or ranked-pairs voting. Although the structure of the WCF for those two systems is fairly
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Algorithm 2 Top level loop for manipulation

Start
for each j-WCF, (call it) K do
if candidate 1 (is/is not) a (unique/nonunique) winner according to K and K is an
internally consistent, well-formed j-WCF then
(1) build an ILPFP that checks whether there is an assignment to the votes of M
such that K’s winner-set certification framework is realized by the set of votes V ∪M
(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise manipulation that succeeds)

end if
end for
declare that the given goal cannot be reached with ‖M‖ manipulators
End

different, they are alike in being built from the same primitive objects: inequalities between

weights of edges of the WMG, the Bigger and StrictlyBigger terms. And additionally for

ranked pairs, we have to create inequalities stating that a particular edge is either positive,

negative, or zero in weight. All of these terms can easily be written in terms of the WMG

edge weight, so we just have to be able to express as a linear function of our ILPFP constants

and variables the weight of an edge after manipulation. And then the ILPFP constants will

define the parameters of the problem, with values derived from the input instance, and an

assignment to the ILPFP variables defines a particular attempt to satisfy the current WCF

for that iteration and to solve the problem.

We will now give the details of the ILPFP. First, we will number the j! possible vote

types over the j candidates as 1 through j!. We will then have a constant ni, 1 ≤ i ≤ j!,

denoting how many votes of type i are in the nonmanipulative voter set V . We will have

a variable mi, 1 ≤ i ≤ j!, denoting how many of the manipulative voters are chosen to

cast a vote of type i. So we can see that we have j! variables total, which is quite large

but constant in terms of the number of candidates j, thus enabling us to get the desired

performance from Lenstra’s algorithm.

There are essentially two types of constraints that we must build: those enforcing the

WCF, which we will build in terms of the WMG edge weight after manipulation, and those

enforcing the additional constraints of the manipulation problem. We will handle the first

type first. Let D(a, b) describe the weight of a WMG edge (a, b) after manipulation. Given

that we can express D(a, b) in our linear program, we can build all of the necessary terms

for enforcing the WCF. The term Bigger(a, b, c, d), stating that the edge from a to b is at

least as strong as the edge from b to a can be expressed as the following:

D(a, b) ≥ D(c, d).
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And StrictlyBigger(a, b, c, d) can be expressed as the following:

D(a, b) ≥ D(c, d) + 1.

And then the three-way constraints for ranked pairs can be expressed as one of the

following:

D(a, b) ≥ 0

D(a, b) ≤ 0

D(a, b) = 0

.

So now we just have to express D(a, b) in our linear program. We will define some more

notation for simplification. Let pref (a, b) be the set of vote types (chosen from {1, . . . , j!})

in which candidate a is preferred to candidate b. Now we can implement D(a, b) as follows:

∑

i∈pref (a,b)

(ni +mi)−
∑

i∈pref (b,a)

(ni +mi).

In short, this is the number of voters from both the original voter set and the manipu-

lators that prefer a over b, minus the number of voters from both the original set and the

manipulator set that prefer b over a, and it gives us exactly D(a, b), the weight of the edge

(a, b) in the WMG.

Now we just have to implement the remaining constraints to ensure that the manipulation

chosen is a valid one. In this case we only need a few additional constraints to ensure that

we make a valid selection of manipulator votes when assigning the variables. We will have

a the following constraint to ensure that the appropriate number of manipulator votes is

assigned:

∑

1≤i≤j!

mi = ||M ||.

And finally we have the following constraint for every i, 1 ≤ i ≤ j!: mi ≥ 0, to prohibit

a negative number of manipulators of any type.

This completes the specification of the algorithm. Thus we have algorithms to solve the

manipulation problem for Schulze and ranked pairs that will run in a fixed polynomial time

for any constant number of candidates, putting this problem in FPT.

4.3.2 Bribery Results

Theorem 4.3.2. For Schulze and (with any feasible tie-breaking functions) ranked-pairs

elections, bribery is in FPT with respect to the number of candidates, in both the succinct
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and nonsuccinct input models, for both constructive and destructive bribery, in both the

nonunique-winner model and the unique-winner model.

Proof. Again we assume the candidates are 1, . . . , j and the distinguished candidate is can-

didate 1. The remainder of the input is the set of initial votes V (or for the succinct

version, a list describing which types of votes occur at least once in the set, along with the

multiplicities of each), and the bribing limit k. Algorithm 3 specifies the top-level loop.

Algorithm 3 Top level loop for bribery

Start
for each j-SWCF, (call it) K do

if candidate 1 is a unique winner according to K and K is an internally consistent,
well-formed j-SWCF then
(1) build an ILPFP that checks whether there is a way of bribing at most k of the
voters such that K’s winner-set certification framework is realized by that bribe
(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise bribe that succeeds)

end if
end for
declare that the given goal cannot be reached by k bribes
End

So now we just have to specify how we build the ILPFP inside the loop for a particular

WCF. Again we will number the vote types from 1 to j!. The constants of the ILPFP will

include a constant ni, 1 ≤ i ≤ j! denoting how many voters there are of vote type i in V .

The variables will include a variable mi,ℓ, 1 ≤ i, ℓ ≤ j!, denoting how many voters of vote

type i are bribed away to vote type ℓ. Note that we do not restrict that i 6= ℓ, and although

it would not be useful to bribe a voter to vote exactly the same way he or she already did,

there is nothing in the model that prevents it either.

Now we will specify how to build the constraints of the ILPFP in terms of these constants

and variables. As before, the main WCF-enforcing constraints can all be implemented in

terms of D(a, b), the weight of a WMG edge after manipulation. So we just have to be able

to specify this term in order to be able to build all the necessary constraints. In the case of

bribery, we can specify D(a, b) as follows:


 ∑

i∈pref (a,b)

ni +


 ∑

1≤ℓ≤j!

mℓ,i


−


 ∑

1≤ℓ≤j!

mi,ℓ






−


 ∑

i∈pref (b,a)

ni +


 ∑

1≤ℓ≤j!

mℓ,i


−


 ∑

1≤ℓ≤j!

mi,ℓ
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In other words, we add up the number of voters of each vote type preferring a over

b, adding in the voters that are bribed into this vote type and subtracting out the voters

that are bribed away from that vote type, and then subtract the same expression except

with the vote types preferring b over a. With this expression we can build all the necessary

constraints to enforce the WCF.

Additionally we must include constraints to enforce that we have a valid selection of

voters to bribe. For every i, 1 ≤ i ≤ j!, we must have that
∑

1≤ℓ≤j!mi,ℓ ≤ ni, enforcing

that we do not bribe away more voters of a certain type than existed in the first place. For

every i, ℓ, 1 ≤ i, ℓ ≤ j!, we have a constraint mi,ℓ ≥ 0, enforcing that all our counts of bribed

voters are nonnegative. And finally we have a constraint
∑

1≤i,ℓ≤j!mi,ℓ ≤ k, enforcing that

the total number of bribes is bounded by the limit.

This completes our description of the WCF-enforcing ILPFP and our the algorithm for

these cases. This gives us an algorithm that will run uniformly in polynomial time for every

fixed number of candidates, putting this problem in FPT.

4.3.3 Control Results

In this section, we prove our results for control gained through our looping-over-frameworks

approach. Our proofs for these case will closely follow our general looping-over-frameworks

structure, and we will just have to appropriately build the constraints of our ILPFPs to

handle the details of the control problems.

Theorem 4.3.3. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, control by adding voters is in FPT with respect to the number of candidates,

in both the succinct and nonsuccinct input models, for both constructive and destructive

control, and in both the nonunique-winner model and the unique-winner model.

Proof. As before, we assume the candidates are 1, . . . , j and the distinguished candidate is

candidate 1. The remainder of the input is the set of initial votes V , the set of additional

votes W (or for the succinct version, one list for each of these two sets describing which

types of votes occur at least once in that set, along with the multiplicities of each), and an

adding limit k. Algorithm 4 specifies the top-level loop.

Now we will specify how we build the WCF-enforcing ILPFP inside the loop. The

constants of the ILPFP will include a constant ni, 1 ≤ i ≤ j!, representing how many votes

of each vote type i are in the initial election and a constant hi, 1 ≤ i ≤ j!, representing how

many votes of each vote type i are in the additional set W . The variables of the ILPFP will

include a variable vi, 1 ≤ i ≤ j!, representing how many voters of each type are added to

the election.
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Algorithm 4 Top level loop for control by adding voters

Start
for each j-WCF, (call it) K do
if candidate 1 (is/is not) a (unique/nonunique) winner according to K and K is an
internally consistent, well-formed j-WCF then
(1) build an ILPFP that checks whether there is a set of votes W ′ ⊆ W , with
‖W ′‖ ≤ k, such that K’s winner-set certification framework is realized by the set of
votes V ∪W ′

(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise added set that succeeds)

end if
end for
declare that the given goal cannot be reached by adding at most k voters
End

To finish the specification, we just have to describe how to implement D(a, b) as a linear

expression of these constants and variables so we can build the Bigger and StrictlyBigger

terms and the additional constraints for ranked pairs that comprise our WCFs, and addi-

tionally how to implement the other constraints to enforce the validity of the manipulative

action. We can implement D(a, b) in this case as follows:

∑

i∈pref (a,b)

(ni + vi)−
∑

i∈pref (b,a)

(ni + vi).

There are a few necessary constraints to enforce the validity of the manipulative action.

We include a constraint vi ≥ 0 for every i, 1 ≤ i ≤ j!, enforcing that we cannot add a

negative number of voters of any type. We include constraints hi ≥ vi for every i, 1 ≤ i ≤ j!,

enforcing that we cannot add more voters of any type than we have available in W . And

we add a constraint
∑

1≤i≤j! vi ≤ k, bounding the number of additions by the bound k.

This suffices to describe how we can build a WCF-enforcing ILPFP for the control

by adding voters problem in a way appropriate for our looping-over-frameworks technique.

Thus we have an algorithm that will run in polynomial time for every fixed parameter value,

putting this problem in FPT.

Theorem 4.3.4. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, control by deleting voters is in FPT with respect to the number of candidates,

in both the succinct and nonsuccinct input models, for both constructive and destructive

control, and in both the nonunique-winner model and the unique-winner model.

Proof. The input for this problem is a control instance with a set of votes V over j candidates

1, . . . , j, with candidate 1 being the distinguished candidate, and with a bound k on the

number of votes to be deleted. Algorithm 5 specifies the top-level loop.
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Algorithm 5 Top level loop for control by deleting voters

Start
for each j-WCF, (call it) K do
if candidate 1 (is/is not) a (unique/nonunique) winner according to K and K is an
internally consistent, well-formed j-WCF then
(1) build an ILPFP that checks whether there is a subset of the voters V ′, with
‖V ′‖ ≤ k, such that K’s winner-set certification framework is realized by the set of
votes V − V ′

(2) run that ILPFP and if it can be satisfied then halt and accept (note: the satisfying
settings will even let us output the precise deleted set that succeeds)

end if
end for
declare that the given goal cannot be reached by deleting at most k voters
End

The ILPFP we build inside the loop will include a constant ni, 1 ≤ i ≤ j!, representing

how many votes of each vote type i are in the initial election. We will include in the ILPFP

variables vi, 1 ≤ i ≤ j!, representing the number of votes of type i that are deleted. With

this new variable, we will formulate D(a, b) in the ILPFP as follows:

∑

i∈pref (a,b)

(ni − vi)−
∑

i′∈pref (b,a)

(ni′ − vi′).

With this we can easily build the Bigger and StrictlyBigger predicates we use to enforce

the WCF, as well as the additional constraints necessary for an RPWCF.

Additionally, we need to include constraints that ensure that the control action chosen

through the assignment to the variables is a legal one. We include a constraint vi ≥ 0 for

every i, 1 ≤ i ≤ j!, enforcing that we cannot delete a negative number of voters of any

type. We include constraints ni ≥ vi for every i, 1 ≤ i ≤ j!, enforcing that we cannot delete

more voters of any type than there were in the first place. And finally we add a constraint

k ≥
∑

1≤i≤j! vi, bounding the total number of deletions by the bound k.

These modifications to our basic approach embed the problem of deciding what subset

of voters to delete to satisfy a given WCF into an ILPFP, and there will only be a constant

number of ILPFPs to test for each number of candidates. Thus the algorithm specified by

the outer loop above is uniformly polynomial for every fixed parameter value, putting this

problem in FPT.

Theorem 4.3.5. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, control by partition of voters is in FPT with respect to the number of candidates,

in both the ties-eliminate and ties-promote models, in both the succinct and nonsuccinct input

models, for both constructive and destructive control, and in both the nonunique-winner
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model and the unique-winner model.

Proof. These cases can again be handled with our looping-over-frameworks approach, and

the constraints and modifications necessary to properly implement the WCF-enforcing

ILPFP are similar to the previous cases, though we have to loop over not just single WCFs

but rather pairs of them, one for each part of the partition. As before we will assume the

candidate names are 1, . . . , j with 1 as the distinguished candidate. We specify the outer

loop for these cases in Algorithm 6.

Algorithm 6 Top level loop for control by partition of voters

Start
for each j-WCF, (call it) K1 do

for each j-WCF, (call it) K2 do
if K1 and K2 are internally consistent, well-formed j-WCFs then
(1) build an ILPFP that checks whether there is a partition of the voters V into
V1, V2, such that K1’s winner-set certification framework is realized by the set of
votes V1 and K2’s winner-set certification framework is realized by the set of votes
V2
(2) run that ILPFP and if it can be satisfied, and if candidate 1 (is/is not) a
(unique/nonunique) winner in the election with voters V and the surviving candi-
dates from K1 and K2 (according to the appropriate tie-handling rule), halt and
accept (note: the satisfying settings will even let us output the precise partition
that succeeds)

end if
end for

end for
declare that the given goal cannot be reached by any partition of voters
End

Now we must specify the new details of the partition-handling ILPFPs. For every i,

1 ≤ i ≤ j!, we will include constants ni representing how many votes of each vote type i are

in the initial election and variables vi representing how many votes of type i are placed in

V1.

Though we must use two WCFs, we can implement each as before, and in parallel

in a single ILPFP. Let us use the predicates Bigger1 and StrictlyBigger1 (Bigger2 and

StrictlyBigger2) to handle the constraints of WCF K1 (K2) over the weight of its WMG

edges which we will denote by D1 (D2).

Bigger1 and StrictlyBigger1 can be formulated appropriately in terms of D1, while

Bigger2 and StrictlyBigger2 can be formulated in terms of D2. The extra constraints for

ranked pairs will be implemented in terms of D1 and D2 as appropriate as well. We will now

show how to handle D1 and D2. D1(a, b) denotes how many voters in V1 prefer candidate a

to candidate b and we can formulate it as follows:
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∑

i∈pref (a,b)

(vi)−
∑

i∈pref (b,a)

(vi).

D2(a, b) denotes how many voters in V2 prefer a to b, and we formulate it as follows:

∑

i∈pref (a,b)

(ni − vi)−
∑

i∈pref (b,a)

(ni − vi).

Finally, we must add constraints to ensure the chosen partition is a legal one. We include

a constraint vi ≥ 0 for every i, 1 ≤ i ≤ j!, enforcing that a nonnegative number of voters

of each type are chosen for the first partition. We include a constraint ni ≥ vi for every i,

1 ≤ i ≤ j!, enforcing that we do not take more voters than exist of each type for the first

partition.

These modifications to our basic approach embed the problem of deciding what partition

of voters to use to satisfy a pair of WCFs into an ILPFP, and there will only be a constant

number of ILPFPs to test for each number of candidates. Thus the algorithm specified by

the outer loop above is uniformly polynomial for every fixed parameter value, putting this

problem in FPT.

4.4 Other Results

4.4.1 Candidate Control Parameterized on the Number of Candi-

dates

Under our primary parameterization of interest, parameterizing on the number of candi-

dates, and when considering manipulation, bribery, and voter control, we achieved FPT

results through great effort using our looping-over-frameworks technique. In contrast, when

considering candidate control problems parameterized on the number of candidates, we need

not use such a powerful technique. Instead it is sufficient to brute-force search over all pos-

sible control solutions to see if any of them are successful. At every possible value for the

parameter, there are only a constant number of possible solutions to any of the candidate

control problems, and checking the success of the possible solution will only require a simple

polynomial-time task. Thus the full procedures at every fixed parameter value will run in

time of a large constant times a small uniform polynomial, putting the problems in FPT.

Theorem 4.4.1. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, control is in FPT with respect to the number of candidates, in both the succinct

and nonsuccinct input models, for both constructive and destructive control, for all standard

types of candidate control (adding/unlimited adding/deleting candidates, and, in both the
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ties-eliminate and ties-promote first-round promotion models, partition and runoff partition

of candidates), in both the nonunique-winner model and the unique-winner model.

Proof. In the case of adding candidates, at most all the 2||D|| possible subsets of the auxiliary

candidate set need be considered. In the case of deleting candidates, we must consider at

most the 2||C||−1 possible subsets of the candidate set to delete. In the case of runoff

partition, there are 2||C||−1 distinct partitions, while in the partition case there are 2||C||.

The difference between the partition cases is because the runoff partition the two parts are

handled symmetrically, while they are not in the partition case. For any of these cases, we

have to at most run three iterations of the voting system function, so all these cases will be

in FPT for any voting system with a polynomial-time winner problem.

4.4.2 Voter Control Parameterized on the Number of Voters

Although we feel that the number of candidates is the most natural parameterization for

manipulative action problems, it is natural to ask about parameterizing on the number of

voters. We do not exhaustively handle this case for all manipulative action problems, but

we note that voter control problems parameterized on the number of voters can be shown to

be in FPT through simple brute-force. Again, as in the case of candidate control problems

parameterized on the number of candidates, we note that the number of possible solutions

to these problems is bounded by a constant for each parameter value, and checking each

solution is easily done in polynomial time, giving us an FPT algorithm for each of the voter

control problems.

Theorem 4.4.2. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, control is in FPT with respect to the number of voters, in both the succinct and

nonsuccinct input models, for both constructive and destructive control, for all standard types

of voter control (adding/deleting voters, and, in both the ties-eliminate and ties-promote

first-round promotion models, partition of voters), in both the nonunique-winner model and

the unique-winner model.

Proof. In the case of adding voters we will have to try at most all of the 2||W || possible

subsets of the auxiliary voter set. In the case of deleting voters we will have to consider

at most all the 2||V || subsets of the voter set. And in the partition of voters cases we will

have to consider the 2||V ||−1 distinct partitions of the voter set. In all of these cases the

large exponential term of the complexity will be constant with fixed parameter values. And

beyond that term, we will just have to perform a few iterations of the voting system’s winner

function along with a few other simple checks, putting all these cases in FPT for any voting

system with a polynomial-time winner problem.
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4.4.3 WMG Edge Bound Parameterization

The technique used here of looping over frameworks was necessitated by the fact that the

natural structure for representing information about Schulze or ranked-pairs elections, the

WMG, is too rich a structure for our purposes, and there are not a bounded number of

possible WMGs for a fixed number of candidates. The number of WMGs with bounded

edge weight is bounded in terms of the number of candidates, but working in this setting

would give us results of narrow importance, applying only to cases where all pairwise contests

are close to tied, even as the number of candidates grows arbitrarily large.

Even though that setting is questionably natural, one might assume that bounding the

WMG edge weights would simplify many hard election problems. But we find this to be

often untrue. As a corollary to the work of Menton and Singh ([MS13], also presented in

Chapter 3 of this thesis), we observe that several of the control problems in Schulze voting

are NP-complete even if the maximum WMG edge weight is bounded by a constant, or even

if the set of possible edge weights is restricted to a few options.

Corollary 4.4.3. (Corollary to the proofs of [MS13].) Even when restricted to elections

having all pairwise contests so equal that each WMG edge has absolute value at most 2

(or alternatively that the total cardinality of the set of absolute values of WMG edges is at

most 2; or alternatively that the total cardinality of the set of values of WMG edges is at

most 3), Schulze elections are NP-complete (in the nonunique-winner model) for constructive

control by deleting candidates. The same holds for constructive control by adding candidates,

unlimited adding of candidates, partition of candidates in the ties-eliminate model, and run-

off partition of candidates in the ties-eliminate model, except with the 2/2/3 above replaced

by 4/3/5. The same holds for constructive control by partition of candidates in the ties-

promote model and run-off partition of candidates in the ties-promote model, except with

the 2/2/3 above replaced by 6/4/7.

4.4.4 Adding/Deleting Bound Parameterization

For those control problems having as part of their inputs a limit on how many candidates

or voters can be added/deleted, it is natural to consider parameterizing on that limit. This

parameterization has been studied in some voting systems and the relevant problems have

often been found to be W[1]-hard or W[2]-hard, and thus very unlikely to be fixed-parameter

tractable. For example, under this parameterization, Betzler and Uhlmann [BU09] showed,

for what are known as Copelandα elections, that constructive control by adding candidates

and constructive control by deleting candidates are W[2]-complete, Liu and Zhu [LZ10]

proved, for maximin elections, that constructive control by adding candidates is W[2]-hard,

and Liu and Zhu also achieved W[1]-hardness results for the relevant voter control problems.
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For additional control results parameterized on the problem’s internal addition/deletion

limit, see Table 8 of [BBCN12].

We observe that, with respect to parameterizing on the internal addition/deletion bound,

for Schulze elections, constructive control by adding voters and constructive control by

deleting voters are bothW[2]-hard. This can be seen through simple modifications of the NP-

hardness proofs for these cases given by Menton and Singh [MS13]. Namely, we appropriately

modify the proofs to reduce from the W[2]-complete problem hitting set instead of from exact

cover by three-sets. Additionally, constructive control by adding candidates can be seen to

be W[2]-hard for Schulze elections through a natural reduction from hitting set.

Theorem 4.4.4. Constructive control by adding candidates parameterized on the adding

bound is W[2]-hard for Schulze voting.

Proof. We will reduce from the W[2]-hard problem hitting set.

Definition 4.4.5 (Hitting Set). Given a set of elements U , a collection F of subsets of U ,

and a positive integer k, does there exist H ⊆ U , with ‖H‖ ≤ k, such that for every S ∈ F ,

we have S ∩H 6= ∅ (i.e. H hits every set in F)?

Given a hitting set instance (U,F , k) as described in the definition, we will construct

a control instance (C,D, V, p, k) where C is the set of original candidates, D is the set of

auxiliary candidates, V is the set of voters, p is the distinguished candidate, and k is the

adding bound. The original candidate set C will contain the following:

• The distinguished candidate p.

• A candidate S for every S ∈ F .

The auxiliary candidate set D will contain the following:

• A candidate u for every u ∈ U .

The voter set V will be as follows. We will not explicitly construct the entire voter set,

but rather we will specify the weight of the WMG edges between the candidates and let the

voter set be as constructed by McGarvey’s method [McG53].

• For every S ∈ F , D(S, p) = 2.

• For every u ∈ U , D(p, u) = 2.

• For every u ∈ U , and for every S ∈ F such that u ∈ S, D(u, S) = 2.

• All other WMG edges will be of weight 0.
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The distinguished candidate will be p and the adding limit will be the same limit k as

in the hitting set instance. This completes the specification of the reduction.

If we map from a positive hitting set instance, we will have a positive instance of the

control problem. Let H ⊆ U , ‖H‖ ≤ k, be a solution to the hitting set instance. We will

show that the set of candidates D′ corresponding to the elements from H will be a solution

to the control instance. First, ‖D′‖ ≤ k, so we are within the adding bound. Also, since

the hitting set solution includes members of every set in F , there will be a path from p to

every candidate corresponding to those sets, as including a candidate u ∈ U creates paths

from p to every set S hit by u. So p will have paths to every other candidate just as strong

as they have back to p, and so p will be a winner.

If we map to a successful control instance, we must have a positive hitting set instance.

Succeeding in control will require us to create paths to every candidate that has a path to

the distinguished candidate, so we must add a set of candidates that give us all the necessary

paths. But we are limited to adding at most k of the candidates from the auxiliary set. It

is then easy to see that a solution to our control problem, creating paths to every adversary

candidate with a bounded number of additions, corresponds to a solution to the hitting set

instance.

This proof is an FPT reduction. It clearly runs in polynomial time in the size of the

entire input (exceeding the requirements for an FPT reduction), and the parameter in the

mapped-to instance will always be bounded by (in fact, identical to) the parameter in the

mapped-from instance. So this proof shows that constructive control by adding candidates

parameterized on the adding bound is W[2]-hard for Schulze voting.

4.5 The Weighted Case

So far we have just been concerned with unweighted problem variants. However we can

extend our methods to weighted manipulation and to weighted and/or priced bribery. To

achieve FPT performance in these cases we must parameterize on the numbers of weights

and prices, as present, in addition to the number of candidates. We can handle these cases as

a straightforward extension of our previous proofs by bounding the maximum weight and/or

price in an instance. But we can go further and achieve stronger results parameterizing not

on the maximum weight/price but rather on the cardinality of the weight/price sets. We

will first handle the case of bribery.

Theorem 4.5.1. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, weighted, priced, and weighted and priced bribery is in FPT with respect to the

combined parameter “number of candidates” and “cardinality of the set of voter weights” and

“cardinality of the set of voter prices” in both the succinct and nonsuccinct input models,
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for both constructive and destructive manipulation, and in both the nonunique-winner model

and the unique-winner model.

Proof. We will describe how to handle the weighted and priced case, and note that this

is a generalization of either the weighted and unpriced case or the unweighted and priced

case, so this algorithm will also work for either of these. The top-level loop will be as in

the standard bribery proof in Section 4.3.2. We will specify the extensions to the ILPFP

construction that are necessary to handle the weights and prices.

Let 1, . . . , j be the candidates, let w = {w1, . . . , wy} be the bounded-cardinality set of

weights of the voters, and let p = {p1, . . . , pz} be the bounded-cardinality set of prices. We

will have a constant nα,βi denoting how many voters there are of type i with weight wα and

with price pβ for every i, 1 ≤ i ≤ j!, α, 1 ≤ α ≤ y, and β, 1 ≤ β ≤ z. We will have a

variable mα,β
i,ℓ , for every i, 1 ≤ i ≤ j!, ℓ, 1 ≤ ℓ ≤ j!, α, 1 ≤ α ≤ y, and β, 1 ≤ β ≤ z. mα,β

i,ℓ

describes the number of voters with weight wα and price pβ that are bribed from vote type

i to vote type ℓ. Our total number of variables is larger than in the unweighted unpriced

case, but it is still bounded in our parameters j, y, and z.

Now we will describe how to build the constraints in our ILPFP. As before, we can

implement the predicates Bigger and StrictlyBigger and the additional constraints to handle

ranked pairs in terms of D(a, b), the weight of the edge from a to b in the WMG, so we need

only specify how to formulate D(a, b). We need to take into account both voters that are

bribed away from preferring a over b and voters that are bribed towards preferring a over b.

And we need to keep track of voters of every type, weight, and price. Still, what we need is

very much in line with our simpler implementation of this function in the standard bribery

case. So our new formulation of D(a, b) will be the following:

∑

1≤α≤y

∑

1≤β≤z

∑

i∈pref(a,b)

wα


nα,βi −

∑

1≤ℓ≤j!

(
mα,β

i,ℓ

)
+

∑

1≤ℓ≤j!

(
mα,β

ℓ,i

)



−
∑

1≤α≤y

∑

1≤β≤z

∑

i∈pref(b,a)

wα


nα,βi −

∑

1≤ℓ≤j!

(
mα,β

i,ℓ

)
+

∑

1≤ℓ≤j!

(
mα,β

ℓ,i

)

 .

Additionally we need to implement constraints to make sure that the bribery action we

select is a legal one. Therefore, besides the natural constraints mα,β
i,ℓ ≥ 0, ensuring that we

do not bribe a negative number of voters of a certain type, we have to enforce that we do

not bribe more voters than exist of every type. Thus for every i, 1 ≤ i ≤ j!, α, 1 ≤ α ≤ y,

and β, 1 ≤ β ≤ z, we have the following constraint:

nα,βi ≥
∑

1≤ℓ≤j!

mα,β
i,ℓ .
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And also we must restrict the total cost of all our bribes to the bribing limit k. Thus we

need the following constraint:

k ≥
∑

1≤α≤y

∑

1≤β≤z

∑

1≤i≤j!

∑

1≤ℓ≤j!

pβm
α,β
i,ℓ .

These additional constraints will enforce a legal selection of voters to bribe. These,

together with our specification of D(a, b), complete the specification of the WCF-enforcing

ILPFP. Overall we have an structure that will have a constant number of constraints in

terms of the parameters, and that will have a solution if and only if there is a successful

bribery. Also there will only be a constant number of such objects for every fixed set of

parameter values (in fact it will be constant in terms of just the number of candidates, and

there will be no more WCFs than in the unweighted unpriced case).

Thus the weighted, priced, and weighted and priced variants of bribery are all in FPT

when parameterized on the number of candidates as well as on the cardinalities of the weight

and/or price sets, as present.

For the case of manipulation, we can handle the case where only the cardinality of the

set of weights of the manipulative voters is bounded by a parameter, and the number of

weights among the nonmanipulative voters is unbounded.

Theorem 4.5.2. For Schulze elections and for (with any feasible tie-breaking functions)

ranked pairs, coalitional weighted manipulation is in FPT with respect to the combined pa-

rameter “number of candidates” and “cardinality of the manipulators’ weight set” in both the

succinct and nonsuccinct input models, for both constructive and destructive manipulation,

and in both the nonunique-winner model and the unique-winner model.

Proof. Again let the candidates be 1, . . . , j with candidate 1 being the distinguished candi-

date. The input specifies the nonmanipulator votes as a set of votes along with their weights,

and it specifies the set of manipulator votes as a vector of pairs ((w1, t1), . . . , (ws, ts)) with

there being ti manipulators having weight wi. Our top level loop will be essentially as in

the unweighted manipulation case in Section 4.3.1.

Handling this case requires some surgery on our basic approach. Since we don’t want to

bound the number of weights of the nonmanipulative voters, we can’t have constants rep-

resenting how many voters there are of every weight and of every type. But we don’t need

that information to handle this case. All the “decision making” in the problem happens

regarding the manipulative voters, so we only need a detailed representation of the manip-

ulative voters. A summary of the preferences of the nonmanipulative voters will suffice.

Namely, we have a constant na,b describing the total weight of the nonmanipulative voters

casting votes that prefer candidate a to candidate b for every pair of candidates a, b. The
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values ((w1, t1), . . . , (ws, ts)) describing the weights and how many manipulators there are

of each weight will be constants of the ILPFP as well. The variables of the ILPFP describe

how many manipulators of each weight get manipulated to each particular vote type: mα
i

for every i, 1 ≤ i ≤ j! and α, 1 ≤ α ≤ s, describes how many manipulators of weight wα

are assigned to vote type i.

The WCF can be implemented in terms of Bigger and StrictlyBigger predicates as before,

with these implemented in terms of D(a, b). In this case we will express D(a, b) with the

following:

na,b +
∑

1≤α≤s

∑

i∈pref (a,b)

(wαm
α
i )− nb,a −

∑

1≤α≤s

∑

i∈pref (b,a)

(wαm
α
i ) .

Besides this we just need a few extra constraints to ensure that the manipulation chosen

is a reasonable one. We include a constraint mα
i ≥ 0 for every i, 1 ≤ i ≤ j!, and α,

1 ≤ α ≤ s, enforcing that we do not include a negative number of voters of any type. And

we include a constraint
∑

1≤i≤j!m
α
i = tα for every α, 1 ≤ α ≤ s, ensuring that we use the

same number of manipulators of every weight as we have available.

With these additions, we can build an ILPFP to encode our WCF that will be polyno-

mially bounded in size with fixed values for the two parameters, and there will only be a

constant number of such WCFs with fixed parameter values. Thus our algorithm specified

above will run in uniformly polynomial time with fixed parameter values and this problem

is in FPT.

This still is all a valid framework for our many-uses-of-Lenstra-based approach. Note

that for the case of the cardinality of the set of weights being 1, that gives the case of

weighted noncoalitional manipulation mentioned as an aside by Dorn and Schlotter [DS12],

though here we’re handling even any fixed-constant number of manipulators (since any fixed-

constant number have at most a fixed-constant cardinality of their weight set), and indeed,

even a number of manipulators whose cardinality isn’t bounded but who among them in

total have a fixed-constant cardinality of occurring weights.
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Chapter 5

Control in NRV: Closing the

Final Case

5.1 Introduction

The ranked-vote model became the dominant one in voting theory with Arrow’s semi-

nal work, though not all voting systems follow this convention. The primary alternative

vote model is for a vote to consist of a vector with scores independently awarded to each

candidate. Voting systems in this class are sometimes known as “utilitarian” voting sys-

tems [Hil05], as they allow voters to vote by giving their utilities for each of the candidates.

Approval voting, where each candidate is given a score of either 1 or 0 and the most approved

candidates win, is the best known voting system in this model.

Range voting (RV) is a voting system using this alternative voter model that allows

voters to score candidates individually with integer values in a specified range 0–k, and the

winners of the election are those candidates with the highest sum scores [Smi00]. Normalized

range voting (NRV) is a variant that normalizes the voter’s scores to fill the entire range so

as the maximize the influence of each voter. See Section 2.1.5 for a complete description of

range voting and normalized range voting.

5.2 Behavior of RV and NRV Under Control

In previous work, I showed that normalized range voting resists a large number of cases

of control, but one case, destructive control by partition of voters in the ties-eliminate

model, remained open [Men09]. This last proof completed this analysis of the complexity

of control in normalized range voting, showing that it is resistant to every standard case of
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control other than destructive control by adding or deleting voters. This work, following the

seminal paper on control [BTT92], was done in the unique winner model of control. Table 5.1

summarizes the behavior of range voting and normalized range voting under control, and

compares them to the related system approval voting and to Bucklin and fallback voting,

which are the other systems with the largest known numbers of control resistances.

Control by Tie Approval Bucklin Fallback RV NRV
Model C D C D C D C D C D

Adding Candidates I V R R R R I V R R

Adding Candidates (unlimited) I V R R R R I V R R

Deleting Candidates V I R R R R V I R R

Partition of Candidates TE V I R R R R V I R R

TP I I R R R R I I R R

Run-off Partition of Candidates TE V I R R R R V I R R

TP I I R R R R I I R R

Adding Voters R V R V R V R V R V

Deleting Voters R V R V R V R V R V

Partition of Voters TE R V R R R R R V R R

TP R V R S R R R V R R

Table 5.1: Control results for approval [HHR07], Bucklin voting [EF10b, EPR11], fallback
voting [ER10, EF10b, EPR11], range voting, normalized range voting.

Theorem 5.2.1. 4-NRV is resistant to destructive control by partition of voters in the

ties-eliminate model.

We will reduce from the Exact Cover by Three-Sets problem (X3C), defined as follows.

Given: A set B = {b1, . . . , b3j} and a family S = {S1, . . . , Sn} of sets of size three of

elements from B.

Question: Is it possible to select j sets from S such that their union is exactly B?

Proof. Given an X3C instance (B,S) we will construct a 2-range election (C, V ) as follows.

The candidate set will be B∪{c, w}, where c will be the distinguished candidate. The voters

set V will consist of the following:

• For every Si ∈ S, one voter with a score of 4 for every candidate in B − Si, a score of

2 for c, and a score of 0 for every other candidate;

• 2n voters with a score of 4 for every candidate in B, a score of 2 for c, and a score of

0 for w;

• j − 1 voters with a score of 4 for w, a score of 2 for c, and a score of 0 for all other

candidates;
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• For every b ∈ B, 1 voter with a score of 4 for b, a score of 1 for every candidate in

B − {b}, a score of 1 for c, and a score of 0 for w;

• 2j + 3n+ 1 voters with a score of 4 for w and a score of 0 for every other candidate.

We will assume that 1 ≤ j ≤ n and that each element in B is in at least one set from S.

If there is an exact cover over B, then w can be made to lose the election through

partition of voters in the ties-eliminate model. Consider the partition of the voter set into

V1, V2, where V1 consists of the voters from the first group corresponding to the elements of

the set cover together with the third group of voters, and where V2 = V − V1.

The candidate w will win the subelection (C, V2) and the distinguished candidate c will

easily win the subelection (C, V1). c will receive 2j points from the cover voters and 2j − 2

points from the other voters for a total of 4j − 2 points. For the B candidates, each will

receive 4 points from each of the first-group voters except the one that corresponds to the

set that covers them, coming to 4j− 4 points in total. w will gain 4 points from each of the

j − 1 voters that favors them, and so he or she will gain 4j − 4 votes in total. Therefore c

will win this subelection and will go on to face w in the final election.

In the final election, with almost all of the candidates eliminated, vote normalization

will occur benefiting c to the point that he or she gains the advantage. All of the votes in

the first, second, and fourth groups will now give four points to c, giving them 12n+14j−2

points in total. This is at least as many as the 12n+ 12j points w was given, and so w will

no longer be the unique winner.

If there is no exact cover, w cannot be made to lose the election through partition of

voters in the ties-eliminate model. This is due to several facts: w will win at least one of

the two subelections, c cannot win either subelection, and w will win head to head against

all candidates that it may face in the final election.

c cannot win an initial subelection except as previously described. No voter prefers them

outright, so the only way to make them win is to balance the points he or she gains from the

first group of voters and from the third group of voters and to give him or her an advantage

over each B candidate by covering that candidate with a voter that prefers c. None of the

other voters will help c win a subelection, as no others help c gain points relative to the B

candidates. If a set of first group voters smaller than j that is not a cover is chosen, then

at least one B candidate will gain points for every one of these voters. We will then not be

able to boost c over the B candidates without giving too many points to w. If a cover larger

than j of voters is chosen, then there will not be enough third group voters to include to

boost c over the B voters and c will not be able to win.

The candidate w must win at least one of the initial subelections and make it to the final

election. With the original candidate set and unnormalized scores, w has a considerable
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advantage in points over all other candidates, and since it is largely the same voters that

support all of the other candidates, there is no way to partition the voters to make w lose

both subelections.

Against all candidates but c, w will win a head to head contest in the final election. In

a head-to-head contest with w the other candidates gain about as many points as c through

normalization, but they will still have fewer points total as each B candidate loses out on 4

points for every subset Si they are a part of. The B candidate will thus have no more than

12n+ 12j − 4 votes, while w will have 12n+ 12j votes and will be the winner.

Therefore w will win the final election for all partitions in the case that there is not an

exact cover over the set B.
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Chapter 6

Reducing Search to Decision for

Election Problems

6.1 Introduction

The dominant convention in the computational social choice literature has been to analyze

the complexity of the decision versions of manipulative action problems such as manipula-

tion, bribery, and control. Decision problems are simpler to define and analyze and tools of

complexity theory such as reductions can be used to determine their complexity. However,

in the case of, for instance, the manipulation problem, a manipulator would really be more

concerned with specifically how to set their vote to make their favorite candidate win, rather

than just whether it is possible for them to do so. So it may be more appropriate to examine

the complexity of the search versions of these problems. And it is very important to note

that the difficulty of these two versions of a problem can differ.

To be precise, by a decision version of a problem we mean the formally defined prob-

lems given in Section 2 phrased as yes/no questions. These problems in complexity theory

convention can be interchangeably considered as sets, where the elements of the set are the

positive instances of the problem. These problems we can properly consider to be in such

decision problem classes as P or NP-hard. By the search version of an election manipulation

problem, we mean the task of actually generating a successful action for a given manipula-

tion problem instance if one exists, or else indicating failure. We say that a search problem

is easy if there is a polynomial-time algorithm that does just that.

We can easily show that the decision version of any problem is no harder than the search

version, as we can use the search problem to solve the decision problem. That is, decision

always reduces to search. This can be done by simply querying the search version of the
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problem, and if it returns a solution we know we have a positive instance. Therefore the

decision version of a problem is never harder than the search version of a problem. A NP-

hardness proof for the decision version of a problem implies that the search version is at least

as hard, and so the search problem is also extremely unlikely to be solvable in polynomial

time. However, a proof of a polynomial-time upper bound for the decision version of a

problem does not by itself show that the search version is also easy.

The question then for any given problem is whether search reduces to decision. We will

present here proofs for a number of the control cases showing that search does reduce to

decision for any voting system, through giving polynomial-time Turing reductions.

In the remaining cases (manipulation, bribery, and the remaining cases of control), search

provably does not reduce to decision given a common complexity-theoretic assumption.

The Borodin-Demers Theorem states that P 6= NP ∩ coNP implies the existence of a set

B ∈ P where B ⊆ SAT, but for which there is no polynomial-time algorithm that can find

satisfying assignments for all the elements of B [BD76]. For these other cases, we build

voting systems where the relevant manipulative action decision problem is in P, but where

the problem of finding satisfying assignments for a Borodin-Demers set B polynomial-time

reduces to the search problem for this manipulative action. Thus the search version cannot

have a polynomial-time algorithm, despite the decision problem being in P, as for it to do

so would contradict the properties of the Borodin-Demers set B and the assumption that

P 6= NP ∩ coNP.

The nonunique winner model was used throughout this work. This is in contrast to the

previously discussed study of control in normalized range voting.

6.2 Cases Where Search Reduces to Decision

Theorem 6.2.1. For each manipulative action A belonging to the following list:

1. constructive control by adding voters,

2. destructive control by adding voters,

3. constructive control by deleting voters,

4. destructive control by deleting voters,

5. constructive control by adding candidates,

6. destructive control by adding candidates,

7. constructive control by deleting candidates,
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8. destructive control by deleting candidates,

9. destructive control by partition of candidates, ties promote,

10. destructive control by partition of candidates, ties eliminate,

11. destructive control by run-off partition of candidates, ties promote,

12. destructive control by run-off partition of candidates, ties eliminate,

13. constructive control by unlimited adding of candidates, and

14. destructive control by unlimited adding of candidates,

and for each election system E, the A search problem for E polynomial-time Turing reduces

to the A decision problem for E.

6.2.1 Theorem 6.2.1, Control by Adding Voters Cases

We will show that the search versions of constructive and destructive control by adding

voters polynomial-time Turing reduce to the decision versions by providing appropriate

reductions. We will first consider the constructive case, as the destructive version of the

algorithm can be easily adapted from it. The algorithm will proceed iteratively, making

use of the self-reducibility of this problem. That is, an instance of control by adding voters

can be successful if and only if it can be successful either with a particular voter added, or

without that voter added.

Proof. Theorem 6.2.1, control by adding voters cases.

The algorithm will proceed as follows. The input will be a candidate set C, sets of voters

V and W , a distinguished candidate p ∈ C, and an adding limit K (a nonnegative integer).

First, we will query to our CC-AV (constructive control by adding voters) subroutine

the input instance. If the answer is “No,” we will return a fixed value denoting failure.

Otherwise, we know a successful control action exists and we will proceed to find it.

We will initialize our added voter set S to ∅, and then proceed by iterating as long as W

is nonempty and K > 0. Let w be some arbitrary voter from W . We will make a call to the

decision problem for the instance (C, V ∪{w},W −{w}, p,K − 1). That is, we are asking if

we can make p the winner while adding w and no more than K − 1 other voters. If so, we

remove w from W , add w to both V and to S, subtract one from K, and move on to the

next iteration. If not, we instead just remove w from W and move on to the next iteration.

] If we do not have a failed instance (and note that failure will not occur if it does not occur

upon the initial query) we proceed until we either have exhausted all our voters from W or

the parameter K is equal to zero. Note that if we have a positive instance of this case of
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control (in the constructive case) with either an empty W or with K = 0, then p must be a

winner of the election (C, V ), as there is no more possibility to add voters. We can see that

we can easily reduce from the winner problem for an election system to the decision version

of this problem.

So at this point, our set S will contain all the added voters and p will win the election

(C, V ∪ S) (using the original value for V ). Thus S is a set of voters such that ||S|| ≤ K

and p is a winner of (C, V ∪ S). Thus we can return S as our successful search action.

This algorithm, making use of a unit-cost subroutine for the decision version of CC-AV,

will easily run in polynomial time, will output a successful manipulative action when one

exists, and will otherwise signify failure. Thus this algorithm provides a polynomial-time

Turing reduction from the decision version of CC-AV to the search version of that problem,

for any voting system.

The algorithm for the constructive case can be reused almost exactly for the destructive

case, with the single change that we must make a call to a subroutine for the destructive

version of this problem rather than the constructive version.

6.2.2 Theorem 6.2.1, Control by Deleting Voters Cases

For these cases, again we will exploit a sort of self-reducibility of the control by deleting

voters problem to build a simple iterative algorithm that uses the decision version of the

problem to extract a successful control action if one exists. In particular, an instance of

control by deleting voters can be successful if and only if it can be successful either when

deleting a particular voter or when not deleting that particular voter. As before, we will

handle the constructive case first and then describe how to adapt the reduction we give to

the destructive case.

Proof. Theorem 6.2.1, control by deleting voters cases.

We will now give the reduction. The input to the algorithm will be an election (C, V ),

a distinguished candidate p ∈ C, and a nonnegative integer K. We will first query the

input instance to our CC-DV (constructive control by deleting voters) decision problem

subroutine. If the answer is “No,” we will return a fixed value denoting failure. Otherwise,

we know a successful control action exists and we will continue.

We will initialize a set S to ∅ in order to keep track of the set of voters to delete. We

will then proceed to iterate over the set of voters V and build our set of deleted voters. For

each voter v ∈ V , and as long as K > 0, we query to our CC-DV decision problem the

instance ((C, V − {v}), p,K − 1). That is, we ask if we can make p a winner by deleting v

and up to K − 1 other voters. If this is the case, we remove v from V , add it to S, subtract
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one from K, and move on to the next iteration. If not, there must instead be a successful

control action without v deleted, so we just move on to the next iteration.

We proceed in this way until we go through the entire voter set, or until K is zero. If we

did not return failure at the start of the algorithm, we must then produce an S such that

||S|| ≤ K and p is a winner of (C, V − S) (with our original value for V ). Thus we return a

successful control action if one exists, and this algorithm will clearly run in polynomial time.

Thus we have shown that search polynomial-time Turing reduces to decision for CC-DV.

As with the adding voters cases, we can provide an algorithm for the destructive version

of this case almost exactly as for the constructive version of this control problem with the

single change that we call a subroutine for the destructive version of the problem instead.

6.2.3 Theorem 6.2.1, Control by Adding Candidates Cases

This case is almost the exact mirror of the cases for control by adding voters and we base the

algorithm on a very similar self-reduction, except that we are now adding to the candidate

set instead of the voter set. Again we will consider the constructive version first.

Proof. Theorem 6.2.1, control by adding candidates cases.

We will now give the reduction from the search version of CC-AC (constructive control

by adding candidates) to the decision version of that problem. The input to our algorithm

will be disjoint candidate sets C and A, a voter set V with preferences over C and A, a

distinguished candidate p ∈ C, and a nonnegative integer K, our adding limit.

Initially we will query the input to our subroutine for the decision version of CC-AC.

If the answer is “No,” we will return a fixed value denoting failure. Otherwise, we know a

successful control action exists and we will go on to find it.

First we must initialize our added set S to be ∅. We will then iterate as long as A is

not empty and K > 0. First let a be some element of A. We will use the decision problem

to determine whether we should add a or not. We will query to the decision problem the

instance (C ∪ {a}, A−{a}, V, p,K − 1). That is, we are asking if we can make p the winner

by adding a and up to K − 1 other candidates. If this comes back positive, we add a to S

and to C, and remove it from A. We also subtract one from K. If it comes back negative,

we remove a from A and move on to the next iteration, as in this case it must be possible

to make p win while not adding a.

We continue until either K = 0 or A = ∅. At this point, there is no more allowance for

adding candidates and changing the election, so if we did not hit failure, p will clearly win

the election (C ∪ S, V ) (with the original value for C). So we will return S, and S will be a

successful control action. In the cases where control is not possible we will indicate failure

after the first query, and this algorithm clearly runs in polynomial time. Thus we have
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shown that search polynomial-time Turing-reduces to decision for CC-AC for any voting

system.

As with the previously handled voter control cases, for the destructive version, we can

exploit the same self-reducing structure as with the constructive version of this control prob-

lem and use essentially the same algorithm, but just substitute the appropriate destructive

version for the subroutine call.

6.2.4 Theorem 6.2.1, Control by Deleting Candidates Cases

This case is closely parallel to the proof for control by deleting voters and we will use a similar

self-reductive structure to build this algorithm, except of course modifying the candidate

set throughout instead of the voter set. As before we will first deal with the constructive

case.

Proof. Theorem 6.2.1, control by deleting candidates cases.

The algorithm will proceed as follows. We will take as input an election (C, V ), a

distinguished candidate p ∈ C, and a nonnegative integer K, our deletion limit. We will first

query our subroutine for the decision version of CC-DC (constructive control by deleting

candidates) with the input instance. If the answer is “No,” we will return a fixed value

denoting failure. Otherwise, we know a successful control action exists and we will proceed

to find it.

We again initialize a set S to ∅ to keep track of our deleted candidates. We will iterate

as long as K > 0 through each c ∈ C, except for p, and do the following. We will query to

the decision problem the instance ((C − {c}, V ), p,K − 1). That is, we are asking if p can

be made a winner with c deleted and with up to K − 1 other candidates from C deleted. If

so, we remove c from C, add c to S, and subtract one from K. If not, we know that there

must be some successful control action without c deleted, so we just move on to the next

iteration.

We continue until either we have iterated through the entire set C (except for p) or

K = 0. At this point p will be a winner of the election (C − S, V ) with S such that

||S|| ≤ K (and with our original C). We thus return S as the successful control action. If

there is no successful control action, we would have indicated failure after the initial query.

Also, this algorithm clearly runs in polynomial time, so we have that search polynomial-time

Turing-reduces to decision for CC-DC for any voting system.

Again we can reuse this algorithm for the destructive version of this problem, only

changing the subroutine call to use the destructive version of the decision problem.
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6.2.5 Theorem 6.2.1, Control by Unlimited Adding of Candidates

Cases

The case differs slightly from the others in that we do not have a parameter limiting the

number of candidates that can be added, and so we will always have to iterate through

the entire additional candidate set before generating the control action, but otherwise it

follows essentially the same self-reducing structure as the previous proofs. Again, we will

first handle the constructive case.

Proof. Theorem 6.2.1, control by unlimited adding of candidates cases.

Our algorithm will proceed as follows. We are given as input disjoint sets of candidates

C and A, a voter set V with preferences over C and A, and a preferred candidate p ∈ C.

We will first query the input instance to our CC-ACU (constructive control by unlimited

adding of candidates) decision problem subroutine. If the answer is “No,” we will return a

fixed value denoting failure. Otherwise, we know a successful control action exists and we

will continue.

As before we will use a set S, initialized to ∅, to keep track of the candidates we add.

We iterate as long as A is not empty. Let a be some element of A. We query to the decision

problem the instance (C ∪ {a}, A − {a}, V, p). That is, we are asking if we can make p the

winner by adding a and possibly some other subset of the candidates from A to the election.

If so, we add a to C and to S, remove it from A, and go on to the next iteration. If not,

we remove a from A and go on to the next iteration, as there must be some way to make p

win when not adding a.

We continue until A = ∅ and then return S. At this point, if we did not indicate failure

(which again can only happen following the initial query), p will be a winner of the election

(C ∪ S, V ) (using the original value for C) and S will give us the successful control action

we sought. Otherwise we quickly detect and indicate when control cannot succeed, and

the whole algorithm clearly runs in polynomial time. Thus we have shown that search

polynomial-time Turing-reduces to decision for CC-ACU for any voting system.

Again, we only must change the subroutine call from the previous proof to use the

destructive version the decision problem to obtain a polynomial-time function for the de-

structive version of this problem.

6.2.6 Theorem 6.2.1, Destructive Control by Partition of Candi-

dates Cases

The control by partition of candidates cases are obviously different in feel compared to the

previously handled cases of control by adding or deleting candidates or voters. The key
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insight behind these self reductions is that to successfully achieve destructive control by

partition of candidates, we have to make sure that the distinguished candidate loses either

an initial election if they take part in one, or the final election if they make it that far. But

in fact if there is any subset of the candidates among which the distinguished candidate

will not win, we can simply put that set of candidates together with p in an initial election,

thus eliminating p. There is never a need to allow the distinguished candidate to make it to

the final election, and in the ties-eliminate cases, the first-round elections are more selective

than the final election, with only a unique winner staying in the race, so it is easier to

eliminate the distinguished candidate there. Consequently in each of the ties-eliminate and

ties-promote models, the destructive control by partition of candidates and the destructive

control by run-off partition of candidates problems are in fact the same sets. DC-PC-TP and

DC-RPC-TP turn out to be equivalent to the problem “Is there any subset of the candidates

among which p is not a winner?” and DC-PC-TE and DC-RPC-TE are equivalent to the

problem “Is there any subset of the candidates among which p is not a unique winner?”.

Thus we only need two proofs to handle these four cases, and these two proofs are essentially

the same as well.

Proof. Theorem 6.2.1, DC-PC-TP, DC-PC-TE, DC-RPC-TP, and DC-RPC-TE cases.

We will first handle DC-PC-TP and then describe the modifications necessary to cover

the other cases. The algorithm will proceed as follows. Given our instance ((C, V ), p), we

first query our subroutine for the decision problem with the original instance. If the answer

is “No,” we return a fixed value denoting failure. Otherwise we proceed.

We will initialize a set S to {p} to keep track of the first partition. We will then do the

following for every candidate c ∈ C−{p}. We query to our decision problem subroutine the

instance ((C − {c}, V ), p). Keeping in mind our previous alternate characterization of this

problem, we are asking if p will lose an election among any subset of C−{c}. If this instance

is positive, we know that c is not an essential participant in the subset of candidates that

will beat p, and so we will remove them from C. Otherwise, we know that c must in fact be

in the subset that will beat p, and so we keep them in C and add them to S. After iterating

through all elements of C − {p}, S will contain p along with a set of candidates that will

cause p to not be a winner. Thus we can return (S,C − S) as the partition that will cause

p to lose.

We do not need to make any significant modifications to handle the other similar cases

other than querying the appropriate subroutines. For all of these cases, we can use a unit-

cost subroutine for the decision version of the problem to build a polynomial-time algorithm

for the search version, and so for all of the cases search polynomial-time Turing reduces to

decision for any voting system.
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6.3 Cases Where Search Separates From Decision

Theorem 6.3.1. If P 6= NP ∩ coNP, then for each manipulative action A belonging to the

following list:

1. constructive manipulation,

2. destructive manipulation,

3. constructive bribery,

4. destructive bribery,

5. constructive control by partition of voters, ties promote,

6. destructive control by partition of voters, ties promote,

7. constructive control by partition of voters, ties eliminate,

8. destructive control by partition of voters, ties eliminate,

9. constructive control by partition of candidates, ties promote,

10. constructive control by partition of candidates, ties eliminate,

11. constructive control by run-off partition of candidates, ties promote, and

12. constructive control by run-off partition of candidates, ties eliminate,

there exists an election system E (which may differ based on A), whose winner problem is

in polynomial time, such that the A-decision problem for E is in P but the A-search problem

for E is not polynomial-time computable.

Corollary 6.3.2. If P 6= NP ∩ coNP, then for each of the manipulative actions A listed in

Theorem 6.3.1, A-search for E does not polynomial-time Turing reduce to A-decision for E.

We will now formally give the Borodin-Demers Theorem, which is central to our results.

Theorem 6.3.3 (The Borodin-Demers Theorem [BD76]). If P 6= NP ∩ coNP then there is

a set B so

1. B ∈ P,

2. B ⊆ SAT, and

3. no P machine can find solutions for all formulas in B. That is, for no polynomial-time

computable function g do we have (∀f)[f ∈ B ⇒ g(f) is a satisfying assignment of f ].
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All of these proofs will have a similar structure. We start by assuming that P 6= NP ∩

coNP. Then we fix a set B that fulfills the conditions of the Borodin-Demers Theorem,

i.e., B is a set that is in P, is a subset of SAT, and for which there is no polynomial-time

function that for every formula in B finds a satisfying assignment for that formula. We will

then define a voting system using B, show that its winner problem is in P, show that the

decision problem for the relevant manipulative action is in P, and then show that there can

be no polynomial-time function for the search problem for the manipulative action. This last

task will be accomplished through showing that we can in polynomial time encode a formula

from our Borodin-Demers set B into the search problem of the relevant manipulative action,

in such a way that a solution to this search problem gives a satisfying assignment for the

formula.

6.3.1 Theorem 6.3.1, Constructive Manipulation Case

This proof is likely the simplest of this subsection and closely follows the outline above.

We construct an election system where there are no winners unless the candidates in the

election specify a formula from our Borodin-Demers set B and a voter specifies a satisfying

assignment for this formula. This makes the decision version of the manipulation problem

trivial, but it makes finding a successful manipulation equivalent to finding a satisfying

assignment for a formula from B.

Proof. Theorem 6.3.1, constructive manipulation case.

Assume that P 6= NP∩coNP and let B be a set that fulfills the conditions of the Borodin-

Demers Theorem. We assume that our encoding of SAT is such that for each string x ∈ SAT,

the number of distinct variables in formula x is at most max(0, ⌊ |x|2 ⌋ − 1).

In our voting system, the candidate names specify a string, puzzle(C), as follows: Sort

the candidate names lexicographically and then in order take the low-order bit from each

name other than ǫ and concatenate those. Each voter will also specify a string, which we

will use as an assignment to the variables of puzzle(C), as follows. Recall that each vote

is given as a tie-free linear ordering of the candidates. Sort the candidates of the election

in lexicographic order. Each candidate with odd rank in this sorting will be assigned bit

value 1, and each candidate with even rank will be assigned bit value 0. So for example

if C = {“Alice”, “Bob”, “Carol”, “David”}, “Alice” and “Carol” are 1’s and “Bob” and

“David” are 0’s. Let bitC(c) be the bit value of candidate c among the set of candidates

C. In a vote c1 < c2 < · · · < ck, the bitstring we associate with the vote is bitC(c1) ·

bitC(c2) · · · · · bitC(c⌊ k
2
⌋−1). Note that this allows us to have a voter put his or her favorite

candidate as his or her top choice, regardless of the bitstring the voter is going to represent

and whether that candidate is a 0 or a 1, since we have enough 0’s and 1’s to form any string
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in {0, 1}max(0,⌊ k
2
⌋−1) and place any candidate out of the encoding region in first place.

Now we will specify the actual election system, which we will call E1. On any input (C, V )

we first compute puzzle(C). If puzzle(C) /∈ B, then every candidate loses. If puzzle(C) ∈ B,

we examine every voter vi ∈ V and compute the bitstring bi of that voter as specified. Note

that this bitstring has max(0, ⌊ ||C||
2 ⌋−1) bits. By our assumption about the encoding of SAT

(and noting that |puzzle(C)| ≤ ||C||), this will give us enough bits to specify an assignment

to the variables of puzzle(C). If the first d bits (where puzzle(C) has d distinct variables)

of bi form a satisfying assignment for puzzle(C), then the top choice of vi will be a winner.1

We do this for all vi, so the complete winner set is the set of all candidates who are

the top choice of at least one voter that has a solution to the puzzle. This completes our

specification of E1.

Now we have several things to show about this voting system to complete our proof.

First of all, the winner problem for E1 is in P. Why? B ∈ P and puzzle(C) is easy to

build from C, so detecting whether puzzle(C) is in B is easy. In the case that puzzle(C) /∈ B,

no one wins, and we are done. In the case that puzzle(C) ∈ B, we have to compute and

check the solution attempt of each voter. However, this is easy as well since computing

each bi is easy and testing whether an assignment satisfies a formula can easily be done in

polynomial time (we can even do it in LOGSPACE, and with the right encoding even in

ALOGTIME [Bus87]). Then we just need to toss the top choice of each successful vote into

the winner set and we are done.

Next, the manipulation decision problem for E1 is in P. Why? If puzzle(C) /∈ B, then

no one ever wins so manipulation cannot succeed. If puzzle(C) ∈ B and there is at least

one manipulator whose vote we can change, there will exist a successful manipulation to

make any candidate p a winner. Namely, set that manipulator to a vote that gives a correct

answer to the puzzle in its lower-order bits and has p as its top choice. If puzzle(C) ∈ B but

we cannot change any votes, the only possible manipulation is the empty one. Thus p can

be made a winner if and only if it is already a winner of the election, and we can determine

this as the winner problem is in P. So the problem of determining whether manipulation is

possible is easy.

Finally, the manipulation search problem for E1 is not in FP. Why? If it were in FP B

would violate its conditions. In particular, given a string F ∈ B, we could build a candidate

set Ĉ encoding F as its puzzle. We will have just one voter, who will be manipulative.

Let p be any arbitrary candidate in C. An algorithm for the manipulation search problem

would give us a vote that specifies a satisfying assignment for F . Thus we could use a

polynomial-time function for the manipulation search problem to build a polynomial-time

1We could also have defined every candidate to be a winner in this case, though this gives a less natural
election system.
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function that for every formula in B finds a satisfying assignment for that formula. Such a

function cannot exist by the third item of the Borodin-Demers Theorem, so the constructive

manipulation search problem must not be in FP for E1.

6.3.2 Theorem 6.3.1, Destructive Manipulation Case

This case will heavily draw from our previous proof for the constructive manipulation case,

but we will need to construct a slightly altered voting system such that voters must “solve

the puzzle” in order to prevent a candidate from winning, rather than to cause a candidate

to win.

Proof. Theorem 6.3.1, destructive manipulation case.

Again we assume that P 6= NP∩coNP, we let B be a set that fulfills the conditions of the

Borodin-Demers Theorem, and we assume that our encoding of SAT is such that for each

string x ∈ SAT, the number of distinct variables in formula x is at most max(0, ⌊ |x|2 ⌋ − 1).

We will now describe the voting system E2 that will show the separation of search and

decision for destructive manipulation.

In E2 we will interpret the set of candidates as specifying a “puzzle” in the same way as

with E1, and we will use the same technique for extracting a bitstring from each vote as well.

E2 will then operate as follows. First we must compute puzzle(C) from the candidate set

C. If puzzle(C) /∈ B, then no candidate wins. In the case that puzzle(C) ∈ B, we extract

the bitstring bi from each voter vi and check if any of them give a satisfying assignment for

puzzle(C). If so, then there are no winners, but if not, every candidate is a winner. This

ends our specification of E2.

Again we have several things to show about E2. First, we show that the winner problem

is in P. As before, computing the puzzle and checking for membership in B are both in P, so

in the case that puzzle(C) /∈ B we find the (empty) set of winners easily. If puzzle(C) ∈ B,

we also have to extract the bitstring from each vote and check particular assignments to

puzzle(C), but again this is easily doable in polynomial time. Thus the winner problem is

easily in P.

We also need that the destructive manipulation decision problem is in P. In any case

where puzzle(C) /∈ B, there are no winners, so we have a positive instance. If puzzle(C) ∈ B

and the instance allows us to change the vote of a manipulator, then we have a positive

instance, as setting the manipulator vote to specify a satisfying assignment for puzzle(C)

will cause no candidate to win the election, including the hated candidate. If we do not have

the ability to assign a manipulator vote, we can determine if p will win using the winner

problem for E2, which we already saw was in P. We can easily perform any of these steps,
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including computing the puzzle, checking for membership in B, and checking assignments

to a boolean formula, so the destructive manipulation decision problem is in P for E2.

Finally we need that the destructive manipulation search problem is not in FP for E2.

We will again show that the existence of a polynomial-time search algorithm for destructive

manipulation leads to the existence of a polynomial-time algorithm that for every formula

in B finds a satisfying assignment for that formula. This can proceed exactly as with

constructive manipulation. Let F be a string in B. We will then build a candidate set Ĉ

encoding F , we will have just one voter, who will be manipulative, and we let p be any

arbitrary candidate in Ĉ. Finding a successful manipulation to make p not win will give us

a satisfying assignment for F . So we have a polynomial-time function that for every formula

in B finds a satisfying assignment for that formula. But this cannot exist by the third item

of the Borodin-Demers Theorem, so the destructive manipulation search problem must not

be in FP for E2.

6.3.3 Theorem 6.3.1, Constructive Bribery Case

For this case we can reuse the voting system E1 from the constructive manipulation case

and only slightly change the reduction from the Borodin-Demers set search problem so as

to correspond with bribery rather than manipulation. Since we are using the same voting

system we do not have to again show that the winner problem is in P but we will pick up

from there.

Proof. Theorem 6.3.1, constructive bribery case.

We are dealing with a different manipulative action, however, bribery instead of manip-

ulation, so we will have to show that the constructive bribery decision problem is in P. We

can easily compute puzzle(C) and check for membership in B, and if puzzle(C) /∈ B, then

there can be no winners and bribery will not succeed. On the other hand, if puzzle(C) ∈ B,

if there is at least one vote, and if we can bribe at least one voter, then this will be a positive

instance, as bribing that voter to give a vote encoding a satisfying assignment together with

the preferred candidate p at the top of the voter’s list will cause p to be a winner. If there

are not any voters or if we cannot bribe any voters, then we cannot alter the election, so

we can check whether this is a positive instance simply with the winner problem which we

have already seen is in P.

Now we will show that a polynomial-time function for the search version of this problem

would lead to a polynomial-time function for finding satisfying assignments for the elements

of B. Let F be an element of B. We will build a candidate set Ĉ encoding F as its puzzle.

We will then let the voter set V contain a single voter with an arbitrary initial preference over

the candidates and allow the bribery of a single voter. We run our hypothetical polynomial-
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time algorithm for the bribery search problem on this instance to find a vote that makes

some candidate p ∈ Ĉ win (if no bribery is needed, the initial preference will work). This

vote must specify a satisfying assignment for F , and so we have a polynomial-time algorithm

that for every formula in B finds a satisfying assignment for that formula. Such a function

cannot exist by the third item of the Borodin-Demers Condition, so the constructive bribery

search problem must not be in FP for E1.

6.3.4 Theorem 6.3.1, Destructive Bribery Case

Here we can easily adapt our proof for destructive manipulation and use the same voting

system E2 but just change the reduction from the Borodin-Demers set search problem to

correspond with bribery, as in the previous proof. Again we have already shown that the

winner problem for E2 is in P.

Proof. Theorem 6.3.1, destructive bribery case.

We will show now that the decision problem destructive bribery is in P. As before

we can easily compute the puzzle from the candidate set and test membership in B. If

puzzle(C) /∈ B, there can be no winners so the destructive bribery instance will always

succeed. If puzzle(C) ∈ B, there is at least one voter, and we can bribe at least one voter,

then we could make the hated candidate lose by changing a vote to specify a satisfying

assignment for B. If there are not any voters or if we cannot bribe any voters, then we can

not alter the election, so we can check whether this is a positive instance simply with the

winner problem which we have already seen is in P.

We will now show that there cannot be a polynomial-time function for the destructive

bribery search problem. This can proceed just as the constructive bribery case. Let F be

an element of B. We will build a candidate set Ĉ encoding F as its puzzle, include a single

voter with an arbitrary initial preference over the candidates, and allow bribery of a single

voter. The hated candidate p can be any arbitrary candidate in the election. By running a

hypothetical polynomial-time function for the destructive bribery search problem, we would

acquire a changed vote for the single voter that would specify a satisfying assignment for

F (if no bribery is needed, the initial preference will work) and cause the election to have

no winners. Therefore this could also be used to develop a polynomial-time algorithm that

for every formula in B finds a satisfying assignment for that formula. By the third item in

the Borodin-Demers Condition, this cannot exist, so the destructive bribery search problem

must not be in FP for E2.
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6.3.5 Theorem 6.3.1, Constructive Control by Partition of Voters

(CC-PV) Case

Now we move into the control by partition cases, which are arguably harder and have a

much different feel compared to the previous cases of manipulation and bribery. Now we

need to build a voting system where the partition of the voters into two separate first-round

subelections corresponds to an attempted solution to the “puzzle” of a Borodin-Demers

formula. As in the previous cases, the candidate names specify the puzzle. Unlike the

previous cases, we will use the set of voters to specify the assignment.

Proof. Theorem 6.3.1, constructive control by partition of voters case.

We assume that P 6= NP ∩ coNP, we let B be a set that fulfills the conditions of the

Borodin-Demers Theorem, and we assume without loss of generality that every element of

B contains at least two distinct variables. We assume that our encoding of SAT is such that

for each string x ∈ SAT, the number of distinct variables in x is at most ⌊ |x|2 ⌋.

For this case, we use the same scheme as in E1 for computing puzzle(C) from the candi-

date set. Suppose puzzle(C) is a boolean formula with d variables. Let c1, c2, . . . , c2d be the

first 2d candidates in the lexicographic order. This many candidates exist by our assumption

on the encoding of SAT. Let V be a set of voters. Consider the set of candidates that are

the top choice of some voter in V . If that set is of the form {c1+α1
, c3+α2

. . . , c2d−1+αd
}

with each αi ∈ {0, 1}, we will interpret α1 · α2 · · · · · αd as an assignment to the variables of

puzzle(C).

We will now describe our election system E3. Given an election (C, V ):

• If ||C|| ≤ 2, the lexicographically last candidate is the only winner.

• Else if V = ∅ or there exist two distinct voters in V that have the same candidate as

their top choice, the lexicographically first candidate is the only winner.

• Else if puzzle(C) ∈ B and V specifies an assignment for puzzle(C) as described above

and this assignment is either a satisfying assignment or the complement of a satisfying

assignment (that is, it is a satisfying assignment if we flip each 0 to a 1 and each 1 to

a 0) for puzzle(C), then the lexicographically first candidate is the only winner.

• Else the lexicographically last candidate is the only winner.

This completes our description of E3.

Since this voting system always has exactly one winner in a given election, it will have

the exact same behavior for control by partition of voters in the ties promote and in the ties

eliminate models. Thus we can prove our desired result for both of these cases simultane-

ously.
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Now we again have several things to show about E3. First we need to show that its

winner problem is in P. This is clear from the description of the voting system. Only in the

third case are more than trivial checks performed, and still we must only compute the puzzle

from the candidates and the variable assignment from the voters, check for membership in

B, and check at most two assignments for a boolean formula, all of which can easily be

performed in polynomial time.

We next need to show that the CC-PV decision problem is in P for E3. If there are at

most two candidates, the lexicographically last candidate will be the only winner of both

subelections (regardless of the voter partition) and then will be the only winner in the final

election. So control in this case is possible if and only if the designated candidate is the

lexicographically last. We claim that constructive control by partition of voters on input

((C, V ), p) for ||C|| > 2 is possible if and only if:

• p is the lexicographically last candidate and V 6= ∅, or

• p is the lexicographically first candidate and we are in one of the following, easily

identifiable, four cases:

– V = ∅, or

– there exist two distinct voters in V that have the same candidate as their top

choice, or

– puzzle(C) ∈ B and V specifies a satisfying assignment for puzzle(C) or the com-

plement of a satisfying assignment for puzzle(C), or

– puzzle(C) ∈ B and the set of candidates that are the top choice of some voter in

V is the set of the first 2d candidates in the lexicographic order, where d is the

number of variables in puzzle(C).

It is immediate that control is only possible if p is the lexicographically first or the lexi-

cographically last candidate. First assume that p is the lexicographically last candidate.

If V = ∅, the lexicographically first candidate will always be the only winner, and control

is not possible. If V 6= ∅, then let v be some element from V . The lexicographically last

candidate is the only winner of (C, {v}), since if puzzle(C) ∈ B, puzzle(C) has at least two

variables, and so v will not specify an assignment for puzzle(C). It follows that partition

({v}, V − {v}) makes p the winner.

For the remainder of the proof, assume that p is the lexicographically first candidate.

We will first show that control is possible in all four cases listed above. If V = ∅, the

lexicographically first candidate will always be the only winner. If there exist two distinct

voters in V that have the same candidate as their top choice, then the partition (V, ∅) makes

p the winner. If puzzle(C) ∈ B and V specifies a satisfying assignment for puzzle(C) or the
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complement of a satisfying assignment for puzzle(C), then the partition (V, ∅) makes p the

winner. If puzzle(C) ∈ B and the set of candidates that are the top choice of some voter

in V is the set of the first 2d candidates in the lexicographic order, where d is the number

of variables in puzzle(C), then we can partition V into V1 and V2 such that V1 specifies

a satisfying assignment for puzzle(C) and V2 specifies the complement of this satisfying

assignment. p will be the only winner of both subelections, and wins the final election.

It remains to show that if we are not in one of the four cases listed above, control is

not possible. Suppose for a contradiction that control is possible and that this control is

witnessed by partition (V1, V2). Because of the definition of election system E3, this implies

that p is the winner of (C, V1) and the winner of (C, V2). It follows that puzzle(C) ∈ B and

that V1 and V2 specify a satisfying assignment or the complement of a satisfying assignment

for puzzle(C). Since the top choice of each voter in V is different, it follows that V1 and V2

specify complementary assignments for puzzle(C). This implies that the set of candidates

that are the top choice of some voter in V is the set of the first 2d candidates in the

lexicographic order, where d is the number of variables in puzzle(C), which contradicts our

assumption that we are not in one of the four cases listed above.

Finally we need to show that the CC-PV search problem is not in FP. Let F be a

formula from B. We will construct a CC-PV instance that will allow us to find a satisfying

assignment for F in polynomial time using a polynomial-time algorithm for the CC-PV

search problem. We will build a candidate set Ĉ encoding F as its puzzle. The voter

set will consist of 2d voters, where d ≥ 2 is the number of distinct variables in F , and

the top choice of the ith voter will be the lexicographically ith candidate. The preferred

candidate p will be the lexicographically first candidate. Now, we can query this instance

to a hypothetical algorithm for the CC-PV search problem. We know it will succeed, as

this is a positive instance of CC-PV, as explained above. Furthermore, the partition that

the algorithm finds will necessarily give a satisfying assignment for F . We will have to

arbitrarily pick one side of the partition and check whether the specified assignment or

its complement is a satisfying assignment, but this can be done easily in polynomial time.

Thus the existence of a polynomial-time algorithm for the CC-PV search problem leads to

the existence of a polynomial-time algorithm that for every formula in B finds a satisfying

assignment for that formula. Such an algorithm cannot exist, so the CC-PV search problem

must not be in FP for E3.
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6.3.6 Theorem 6.3.1, Destructive Control by Partition of Voters

(DC-PV) Case

In this case we can reuse the voting system E3 and many of the arguments from the con-

structive case.

Proof. Theorem 6.3.1, destructive control by partition of voters case.

We have already shown that the winner problem is in P. To show that the DC-PV

decision problem is in P for E3, it suffices to observe that since every E3 election has exactly

one winner, destructive control by partition of voters on input ((C, V ), p) is possible if and

only if there exists a candidate q ∈ C − {p} such that constructive control by partition of

voters on input ((C, V ), p) is possible. Finally, to show that the DC-PV search problem is

not in FP, we encode F ∈ B in the same way as in the constructive case. Let p be the

lexicographically last candidate. As in the constructive case, a successful control action is

possible, and we can easily compute a satisfying assignment for F from a partition witnessing

this success.

6.3.7 Theorem 6.3.1, Constructive Control by Partition of Candi-

dates, Ties Promote (CC-PC-TP) Case

The control by partition of candidates cases of control have a strange asymmetry unlike the

partition of voters cases and the run-off partition of candidates cases. This makes this proof

and the next perhaps the trickiest we have here. The basic idea is the same as the others

in this section, that we design an election system that encodes a Borodin-Demers puzzle

in a way that we must (in some limited cases at least) partition according to a satisfying

assignment in order to succeed at control. There are however a number of differences here,

as now we will use the candidate names to specify both the puzzle and the solution. And in

some cases we will have many winners in a given election, unlike our other partition cases

that only ever had one. This limits this proof to only work for the TP model but allows us

to deal with the asymmetry of the control action.

Proof. Theorem 6.3.1, constructive control by partition of candidates, ties promote case.

We assume that P 6= NP ∩ coNP, we let B be a set that fulfills the conditions of the

Borodin-Demers Theorem, and we assume that our encoding of SAT is such that for each

string x ∈ SAT, the number of distinct variables in formula x is at most |x|. We will

now describe the voting system which we will call E4. As we mentioned, we will now use

candidate names to specify both the puzzle and the attempted solutions. Some candidates

are of the form 0puz0, where puz is the Borodin-Demers puzzle. Other candidates are of the

form 10puz0105k + 2i+ αi, where k is the length of puz and “+” denotes the lexicographic
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increment. This candidate would be interpreted as specifying both the puzzle and the

assignment of a value of αi to the ith variable in puz. We will now specify the action of the

voting system. If C = {0puz0} ∪
⋃

1≤i≤d{10puz010
5k + 2i + αi}, where puz ∈ B, k is the

length of puz, d is the number of variables in puz, αi ∈ {0, 1}, and the full string α composed

of all the bits α1, . . . , αd is either a satisfying assignment for puz or the complement of

one, then 0puz0 will be the only winner. If C consists of 0puz0 along with any subset of
⋃

1≤i≤d{10puz010
5k + 2i, 10puz0105k + 2i + 1}, where puz ∈ B, k is the length of puz, d

is the number of variables in puz, αi ∈ {0, 1}, and we are not in the previous case, then

every candidate except 0puz0 will be a winner. In every other case every candidate will be a

winner. This completes our specification of E4. Note that unlike some of our other systems

we totally ignore any and all of the voters in this system.

First, we must show that the winner problem for E4 is in P. This is easy, as though the

specific cases are complicated in form they are simple to recognize. The additional checks

of detecting whether puz is in B and checking whether α is a satisfying assignment for puz

or the complement of one can also be accomplished in polynomial time.

Next we must show that the CC-PC-TP decision problem is in P for E4. If C 6⊆ {0puz0}∪⋃
1≤i≤d{10puz010

5k + 2i, 10puz0105k + 2i+ 1}, where puz ∈ B, k is the length of puz, d is

the number of variables in puz, and αi ∈ {0, 1}, then control will always be possible, since

all candidates are winners if we put no candidates in the first-round election. So suppose

that C ⊆ {0puz0}∪
⋃

1≤i≤d{10puz010
5k +2i, 10puz0105k +2i+1}, where puz ∈ B, k is the

length of puz, d is the number of variables in puz, and αi ∈ {0, 1}. If p is not 0puz0, then

control can easily succeed as we could just put all candidates in the first round, eliminating

only 0puz0 in the first round and letting every other candidate win in the final election. If

our distinguished candidate is 0puz0, control can only succeed in a few specific but easy

to recognize situations. One case is if we have the complete set of variable assignment

candidates along with 0puz0. In this case we can make 0puz0 win by putting it together

with a satisfying assignment of variable assignment candidates in the first round. Then it

alone will move on to the final round and face the complement of this satisfying assignment

in the final election and come out a winner. The only other case in which 0puz0 can be

made a winner through this type of control is if the candidate set consists of 0puz0 along

with exactly a satisfying assignment (or the complement of one) of the variable assignment

candidates. In this case we can just give every candidate a bye and 0puz0 will win the final

election. These cases are all easy to recognize so the decision problem is easily in P.

Finally we need to show that the CC-PC-TP search problem is not in FP. Let puz be an

element from B, let k be the length of puz, and let d be the number of variables in puz. We

will then construct a voter set C as {0puz0}∪
⋃

1≤i≤d{10puz010
5k+2i, 10puz0105k+2i+1}.

The voter set can remain empty as this voting system totally ignores the voters. Our
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distinguished candidate p will of course be 0puz0. The only way to make 0puz0 a winner

through this type of control is to put it in the first-round election with variable assignment

candidates specifying a satisfying assignment or the complement of a satisfying assignment.

Thus a polynomial-time search function for CC-PC-TP will allow us to find a satisfying

assignment for puz and thus give us a polynomial-time algorithm that for every formula in

B finds a satisfying assignment. Such an algorithm cannot exist, so CC-PC-TP search must

not be in FP for E4.

6.3.8 Theorem 6.3.1, Constructive Control by Partition of Candi-

dates, Ties Eliminate (CC-PC-TE) Case

Unlike all our other proofs in this section, for partition of candidates we do need a separate

proof for the ties-promote and ties-eliminate cases. The system E4 in our previous proof

often selects large numbers of winners, so the behavior of that system will be different under

the TP and TE models. In the system we use here, we ignore the votes completely, add

several special candidates, and use candidates to specify both the puzzle and the assignment.

Proof. Theorem 6.3.1, constructive control by partition of candidates, ties eliminate case.

We will use the variable assignment candidates from the previous proof to specify the

puzzle and mark the variable assignments. We also have three special candidates named a,

b, and c. For concreteness, let a = 0, b = 01, and c = 10. We assume that P 6= NP ∩ coNP,

we let B be a set that fulfills the conditions of the Borodin-Demers Theorem, we assume

that our encoding of SAT is such that for each string x ∈ SAT, the number of distinct

variables in formula x is at most |x|, and we assume that every x ∈ B contains at least one

variable. We will now describe the behavior of voting system E5 on input (C, V ).

• If a ∈ C but b, c /∈ C, winners = ∅.

• If C = {b} or C = {c}, winners = ∅.

• If b ∈ C but a, c /∈ C and at least one other candidate is in C, winners = {b}.

• If c ∈ C but a, b /∈ C and at least one other candidate is in C, winners = {c}.

• If b, c ∈ C, winners = {b, c}.

• If a, b ∈ C but c /∈ C:

If the other candidates in C specify puz ∈ B and a satisfying assignment for puz, then

winners = {a}.

If the other candidates in C specify puz ∈ B and a nonsatisfying assignment for puz,

then winners = {a, b}.
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Else winners = ∅.

• If a, c ∈ C but b /∈ C:

If the other candidates in C specify puz ∈ B and a satisfying assignment for puz, then

winners = {a}.

If the other candidates in C specify puz ∈ B and a nonsatisfying assignment for puz,

then winners = {a, c}.

Else winners = ∅.

• In every other case winners = ∅.

This system is more complicated than the others we have used so far and there are a few

things to note. First of all, only a, b, and c can ever win the election. No candidate wins

an election where it is the only candidate. And a can only ever win if it is together with

exactly one of b or c and with a variable assignment. And a can only be a unique winner if

they are together with a satisfying variable assignment.

We will now show that the winner problem for E5 is in P. Although there are many

separate cases specifying E5’s winner problem, most of them only require very simple checks

to determine the presence of the special candidates. Only in the last two cases do we

have to test of membership in our Borodin-Demers set B or deal check for boolean formula

satisfaction, but those things are easily in P as well. So the winner problem as whole is

easily in P.

We will show next that the CC-PC-TE decision problem is in P for E5. Most of the

work and special cases for this proof were directed towards making sure this would be the

case. The main idea is that many instances of control are positive in this voting system,

but they are very simple to detect (and for most of them it is simple to produce the exact

control action as well). If the distinguished candidate is either b or c and there is at least one

other candidate that is not a, then control will always be possible. The only circumstances

that cause b or c to not be a winner is if they are alone in the election, or if they are in a

particular case alongside a. As long as there is one other candidate, we can ensure b or c

is a winner by giving every candidate except a (if they are present) a bye. However if a is

a candidate, we can ensure it does not interfere with b or c becoming a winner by simply

putting a alone in the first-round subelection where it will be eliminated, thus protecting

b or c in the final round. If the distinguished candidate is either b or c and there is not at

least one other candidate that is not a, then control will never be possible.

If the distinguished candidate is a, we can succeed in a somewhat narrower set of cir-

cumstances. The perfect case is when C consists of {a, b, c} along with the complete set

of variable assignment candidates (0 and 1 for every variable) for some puz ∈ B. In this
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case we put a, b, and a satisfying assignment for puz in the first round. Candidate a will

thus be the only winner of the first-round election, and a will also be a winner of the final

election with c and the complement of this satisfying assignment (which may or may not

itself be a satisfying assignment). Another similar case is if C consists of {a, b, c} along with

the a satisfying assignment for some puz ∈ B and an assignment for a different puz′ ∈ B.

Another case where control can succeed for a is if the candidate set contains a, and only one

of b or c, and C contains an assignment for some puz ∈ B, by giving a bye to all candidates

other than a, b, and c, and an assignment for puz ∈ B. Similarly we can make a win if C

consists of a, b, and c and an assignment for some puz ∈ B, by putting c (or b) alone in the

first round, thus eliminating it and ending up in a situation like the previous case. It is easy

to check that these are the only cases in which control is possible. Though we have a large

number of cases here, none of them are difficult to check and most simply require checking

for the presence of the special candidates.

Finally we can show that CC-PC-TE search is not in FP. Let puz be an element from B.

We then construct an instance of CC-PC-TE search with an empty voter set, a candidate

set consisting of {a, b, c} together with a complete set of variable assignment candidates

encoding puz and having 0 and 1 assignments for every variable in puz, and let our preferred

candidate be a. This follows the pattern of our “perfect” case mentioned earlier, so there

must be a successful control action. The action in fact must be to partition either a and b

or a and c along with assignment candidates specifying a satisfying assignment for puz into

the first-round election. Thus a polynomial-time algorithm for CC-PC-TE search would

give us a polynomial-time algorithm for finding satisfying assignments for elements of B as

well. Such an algorithm cannot exist, so CC-PC-TE search must not be in FP for E5.

6.3.9 Theorem 6.3.1, Constructive Control by Run-Off Partition of

Candidates (CC-RPC) Case

This case is similar to the proofs for control by partition of voters except that since we

are partitioning candidates we use the candidate names to specify both the puzzle and the

assignment, and the voters are not even used.

Proof. Theorem 6.3.1, constructive control by run-off partition of candidates case.

We again have schemes for interpreting some candidate names as the Borodin-Demers

puzzle and some others as an assignment to the variables of this puzzle. We distinguish

between the two by padding the assignment candidate names out to be much longer than

the puzzle candidate names. The puzzle candidates will simply consist of the puzzle x

followed by a single bit, either a zero or a one, while the assignment candidates all will

be five times the length of the puzzle candidates. Given that the puzzle x is of length k,
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each of these will consist of a bitstring 05k incremented 2i places past to denote that the

ith variable should have value 0, or incremented 2i + 1 places past to denote that the ith

variable should have value 1.

We again of course assume that P 6= NP ∩ coNP and let B be a Borodin-Demers set.

Without loss of generality, we assume that every element of B contains at least one variable

and that ǫ 6∈ B. We assume that our encoding of SAT is such that for each string x ∈ SAT,

the number of distinct variables in formula x is at most |x|. We will now specify the behavior

of the voting system E5 on an election (C, V ).

• If the lexicographically smallest candidate is x0 with x ∈ B, and the remainder of the

candidate set consists of d variable assignment candidates (where x contains d vari-

ables) giving exactly one value to each variable in x, and with the full set representing

a satisfying assignment for x, then only x0 will win.

• If the lexicographically smallest candidate is x1 with x ∈ B, and the remainder of

the candidate set consists of d variable assignment candidates (where x contains d

variables) giving exactly one value to each variable in x (but with no requirement that

we have a satisfying assignment), then only x1 will win.

• If the entire candidate set consists of two candidates x0 and x1 with x ∈ B, then only

x0 wins the election.

• In every other case no one wins.

Note that in no case do we ever have more than a single winner, so the behavior of this

system is exactly the same in the ties-promote and ties-eliminate models.

We can see that the winner problem for this voting system is easily in P. Only a few

cases produce any winners at all and they are easy to check for. In the first we have to test

whether the puzzle boolean formula is satisfied by a particular assignment but this is easily

doable in polynomial time, and in the others we only have to test for the presence of certain

candidates and test for membership in B, which is in P by definition.

The decision problem for this case of control is in P as well. First of all, no candidate

other than x0 or x1 for x ∈ B can ever win, and so any instance with any other preferred

candidate will always be negative. Since we are dealing with RPC, every candidate must

go through a first-round subelection and then win in the final election to win overall. And

since we never have more than one winner, if a candidate is going to win overall it must win

in a final election containing either one or two candidates. The only case where that may

happen is in our third winner case above, where x0 wins among x0 and x1. So the only way

to make any candidate win following RPC is to have x0 win one subelection, and x1 win

the other, and to then have x0 win the final election. This can only happen if our entire
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candidate set consists of x0 (with x ∈ B), x1, and the entire set of variable assignment

candidates for x, with candidates assigning 0 or 1 to every variable in x. And in this case

x0 can win as described by being put together with a satisfying assignment of assignment

candidates in the first round and with x1 being put together with the other candidates in

the first round, leading to {x0, x1} as the candidates in the final election. This situation is

easily detectable so this form of control is in P.

Finally, the CC-RPC search problem is not in FP in either tie handling model. Let x

be an element from B and let d be the number of variables in x. We can then easily use a

polynomial-time algorithm for the CC-RPC search problem to find a satisfying assignment

for x. We can do this simply by building an election with C = {x0, x1} ∪
⋃

1≤i≤d{0
5k +

2i, 05k + 2i+ 1} and let p = x0. That is, we create the one election described above where

CC-RPC has a chance to work. We then could use a polynomial-time search algorithm

for this problem to find the successful partition, and this will yield a satisfying assignment

for x. Thus a polynomial-time algorithm for the CC-RPC search problem would give us

a polynomial-time algorithm that for every formula in B finds a satisfying assignment for

that formula. Such an algorithm cannot exist, so the CC-RPC search problem in either tie

model must not be in FP for this voting system.
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Chapter 7

Conclusions

This thesis has sought to expand what is known about the computational behavior of several

popular election systems under manipulative actions. The systems studied here, normalized

range voting, Schulze voting, and ranked-pairs voting, are all quite popular and have been

lauded for their good conventional social choice properties [Smi00, Tid87, Sch11]. The work

presented here has resolved many questions about their computational properties, aiding

choosers of election systems interested in these systems.

Additionally, the work on search vs. decision has sought to reframe the standard notions

of computational social choice in a way that more accurately captures when manipulative

actions are hard, so that the practical importance of the results obtained is as great as

possible. We hope that the work presented in this thesis, taken as a whole, provides useful

results relating to important voting systems and helps to make the field of computational

social choice more practically useful as well.

There are many open avenues regarding the systems we studied here. There are still

several open control cases for Schulze voting. There has not yet been a thorough study of

the worst-case hardness of control in ranked-pairs voting. There is still no known natural

voting system that resists every case of control, and finding one would be of immense

practical and theoretical interest. It would be of interest to see whether the complexities of

search and decision collapse under some reasonable set of voting system properties.

The field of computational social choice remains vibrant and there is much work to be

done.
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Appendix A

Manipulation Can Be Hard in

Tractable Voting Systems Even

for Constant-Sized Coalitions

A.1 Introduction

Research in voting theory has become increasingly important due to the ubiquity of voting

systems. While voting is most typically used for political or organizational elections, re-

cently it has become increasing important as a tool in multiagent systems and distributed

artificial intelligence. From recommender systems [GMHS99, PHG00] such as those seen

in Netflix which makes recommendations based on user activity, to consensus mechanisms

for planning in artificial intelligence [ER91] and search engine and metasearch engine de-

sign [Lif00, DKNS01], mechanisms that aggregate individual ‘votes’ have far-reaching appli-

cations. Many fields of study in computer science such as mechanism design and algorithmic

game theory have become intertwined with research in voting theory. In this chapter, we

concentrate on results in manipulation, that is, strategically changing one’s vote so as to

change the result of the election.

Manipulation, as opposed to other ways of influencing election results, does not change

the structure of the election (as in control [BTT92] and cloning [Tid87]) or involve an ex-

ternal actor bribing voters to change their preferences (as in bribery [FHH09] and campaign

management [EF10a, SFE11]). Manipulation does not require going outside of the election

model but merely involves voters picking their optimal votes. Thus manipulation is the

most immediate and frequently relevant of these problems.
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The most representative subproblem of manipulation is unweighted coalitional manip-

ulation (UCM). The model is simpler than one with weighted voters and so the focus is

squarely on the voting rule itself, not on the interplay of differently weighted voters forming

a coalition. As such, results in UCM are a purer test of a voting system’s vulnerability to

manipulation.

We will first explore the history and key results of voting theory that imply significant

issues with all voting systems, and subsequently we will show how we can cope with some

of these difficulties through complexity theory. In the interest of presenting this history as

a self-contained section, there will be some overlap with the previous discussion of these

topics.

Voting Theory

Voting has long been used as a tool for collaborative decision making, with democratic

government known to have existed at least as far back as 6th century BCE in ancient Greece.

For nearly as long people have studied voting in an attempt to find the best election methods

and solve problems related to voting.

One milestone in the study of voting is the work of 13th century mystic Ramon Llull.

Llull, a prominent Franciscan, was involved with the Catholic church and researched meth-

ods for electing church officials.

Among his extenstive body of work, encompassing at least 265 titles on subjects ranging

from controversial theological viewpoints to romantic fiction, Llull’s contributions to voting

theory stem from three works: Artifitium electionis personarum, En qual manera Natana

fo eleta a abadessa (Chaper 24 of his novel Blaquerna) and De arte eleccionis, all featuring

variants of a pairwise election system we now know as Condorcet voting systems [HP01,

Szp10].

In the eighteenth century, the Marquis de Condorcet developed one of the first criteria

for evaluating voting systems. Condorcet’s criterion is that, for a given election, if there

exists a candidate that beats all other candidates in pairwise contests, then that candidate

must be the winner of the election. It is a somewhat surprising result that such a candi-

date will not always exist due the possibility of cycles in the pairwise societal preferences.

Condorcet proposed this criteria and showed that many popular voting systems do not pos-

sess the property. Those that do are called Condorcet methods, or Condorcet-consistent

voting systems. Elections using Condorcet methods can be viewed as a number of pairwise

majority-rule elections1 or in the case of an election with two candidates, exactly equiva-

lent to a majority-rule election. Hence the literature often refers to Condorcet methods as

1A majority rule decides on the alternative with the majority of the votes.



www.manaraa.com

93

variants of the majority rule [Ris05].

Condorcet methods have often been contrasted with Borda voting, which takes complete

preference orderings as the votes and gives points to each candidate based on the number of

candidates they are ranked above in each vote. For instance a vote denoting a is preferred

to b is preferred to c would give two points to a, one to b, and none to c. There are fervent

arguments between the two systems, debating the importance of the Condorcet criterion

[New92, Saa06, Ris05], in a rivalry dating back to the Marquis de Concorcet’s criticism of

Borda voting when it was first introduced [Szp10].

One persistent concern in elections is that some of the participants may be able to

vote strategically and unfairly gain an advantage over honest voters. Pliny the Younger’s

attempts to manipulate the Roman senate circa 105 CE is possibly the earliest recorded

instance of strategic behavior in elections [Szp10]. The senate, presiding over a murder

trial, were divided into three blocs: those who favored acquittal, banishment, or death for

the accused. The senators were more or less evenly distributed among the three positions,

with the acquittal bloc (headed by Pliny) being slightly larger than the other two. The

normal method of voting was similar to the current justice system in most countries: The

senate would first vote on the guilt of the accused, followed by a vote on the punishment

(banishment or death). Considering how the blocs were aligned, the probable outcome of

the first election would be a decision of guilty, followed by banishment. To give his faction

an edge, Pliny proposed the senators vote for acquittal, banishment or death in a single

ternary-choice election. However, his strategy backfired. The death-penalty faction, fearing

an acquittal, voted for banishment.

Pliny’s story holds more than just strategy and counter-strategy: Pliny convinced the

senate of the fairness of a single ternary-choice election by stating it aligned naturally with

the principle of voting qua sentitits, or according to your true preferences. His attempt

proved unsuccessful but serves as an excellent example of the problem of getting people to

vote honestly. While this problem was recognized by voting theoreticians through history,

it was either dismissed or attempts to solve it were limited at best. For instance, Llull

documents that voters were required to give an oath to vote sincerely, and Jean-Charles de

Borda famously dismissed criticism of his system’s vulnerability to manipulation by saying

“My scheme is only intended for honest men” [Bla58].

Later work drew from game theory to more formally model voter strategy and to analyze

it’s possibilities, especially in the work of Allan Gibbard [Gib73]. We will first explore the

work of Kenneth Arrow, who initiated the modern study of voting theory and introduced

the election model that has become the standard.
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Arrow’s Impossibility Theorem

Arrow’s seminal work in modern social choice theory [Arr50, Arr63] originated in an attempt

to formalize an aggregation function for social opinion. Aggregate mechanisms existed pre-

viously in welfare economics. Called welfare functions, they attempted to measure societal

welfare for a number of alternative possibilities by aggregating the utility or welfare of in-

dividuals (measuring the impact of say, a change in fiscal policy or tax rates). These mech-

anisms all shared the assumption that as subjective a concept as individual utility could be

compared or quantified. A breakthrough came with the Bergson-Samuelson social welfare

function [Ber38] which inspired Arrow’s own aggregate mechanism, also called a social wel-

fare function2. Like the Bergson-Samuelson model, Arrow broke from previous economic

models by considering votes (individual preferences) to be ranked preferences rather than a

collection of numerical utilities over the alternatives. Thus the output of the social welfare

function is a ranked ordering of the alternatives as well. Arrow argues that this is a more

appropriate model for aggregate functions due to the difficulty of interpersonal comparisons

of utility.

Arrow’s key result, known as Arrow’s Impossibility Theorem, shows that no social welfare

function can satisfy all of a set of five reasonable criteria whenever there are more than two

alternatives.By reasonable criteria we mean these conditions “. . . accord with common sense

and with our intuition about fairness and the democratic process” [Szp10]. In formalizing

his aggregate mechanism, Arrow laid down two postulates that directed the construction of

individual preferences, and outlined the aforementioned five characteristics.

The first postulate states that for any pair of alternatives a, b, every individual will always

have some opinion between them: Individuals can be indifferent between them (generally

represented as aIb or bIa, denoting indifference between a and b), or prefer one alternative

to the other (generally represented as aPb in the case that a is preferred to b). The second

postulate is that an individual’s preferences must be transitive, thus disallowing cycles in

individual preference orderings. Note that this requirement is not universally held in voting

theory, and intransitive preferences are sometimes considered reasonable when voters use

different criteria to decide between different pairs of candidates [Hug80]. Consider the

example of an individual Jeff who has to rent a car, and is willing to pay a little more for

additional space. Between a compact and a midsize car, Jeff always chooses the midsize,

since he has to pay just a little more for additional comfort. Similarly, between a midsize

and a fullsize car, Jeff prefers a fullsize car. But between a fullsize car and a compact, Jeff

finds the price difference to be too great, and chooses the compact car instead.

Arrow defines five natural and reasonable criteria for social welfare functions: unre-

2Differences between the two functions are elaborated on throughout Arrow’s paper [Arr50].
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stricted domain, monotonicity, nonimposition, independence of irrelevant alternatives and

nondictatorship.

Unrestricted Domain By the two aforementioned postulates, an individual’s preferences

are represented as an ordering complete over the set of alternatives. Any restriction on which

sets of orderings are permitted as input to the function violates the democratic nature of

the mechanism and violates this criterion. Unrestricted domain would be violated in the

example of elections held in a despotic state where only votes with the current ruler ranked

first are allowed.

Nonimposition The second criterion states that the function should not allow inclusion or

preclusion of outcomes irrespective of the preferences of the electorate. This criterion implies

the social outcome should depend entirely on the set of individual preference orderings. An

example of imposition could be an election in a theocracy where only candidates from the

state religion are permitted to be elected.

Monotonicity The third property, monotonicity, states that an individual cannot harm

a alternative’s position by ranking it higher. In other words, if an aggregate preference

ordering holds that alternative Lane is preferred to alternative Jeff, then, an individual

cannot harm Lane’s aggregate position by ranking Lane above Jeff in his or her ordering,

all other individual orderings being constant. This property implies that that the aggregate

decision must be responsive to and representative of the individual’s preferences.

In the later version of his work, Arrow replaced monotonicity and nonimposition with

the combined property of the Pareto criterion, or unanimity [Arr63]. The Pareto criterion

is slightly stronger than monotonicity since it incorporates nonimposition. It states that for

any two alternatives a and b, if an individual preference ordering prefers a to b with all other

individual preferences indifferent between these two alternatives, then the social outcome

also prefers a to b.

Independence of Irrelevant Alternatives The fourth property of Independence of Ir-

relevant Alternatives (IIA) implies that individual preferences for any pair of alternatives

should not be influenced by other alternatives. A famous anecdote attributed to Sidney

Morgenbesser [Pou08] illustrates IIA: Morgenbesser, ordering dessert in a restaurant, was

informed by the waitress that the dessert choices were apple pie and blueberry pie. Mor-

genbesser chose apple pie. A few minutes later, the waitress returned and informed him

that cherry pie was also available. “In that case,” said Morgenbesser to the utter confusion

of the poor waitress, “I’ll have blueberry.”
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IIA and the possibility of strategic behavior in a voting system are mutually exclusive:

The presence of one in a voting model indicates the absence of the other. While any honest

preference relation between a pair of alternatives would not be influenced by extraneous

alternatives, strategic behavior often requires them. Consider a Borda election between two

alternatives Jeff and Mike where a certain voter prefers Mike, the stronger candidate, to

Jeff. A new candidate, Lane, is introduced that said voter prefers to all others. The voter,

then, instead of his true preference ordering Lane >Mike > Jeff (where Lane >Mike implies

that Lane is preferred to Mike), might misrepresent his preferences as Lane > Jeff > Mike,

in order to weaken Lane’s strongest opponent, Mike. In other words, the introduction of

Lane results in the voter switching his preferences for Jeff and Mike.

Nondictatorship The fifth property states the function should not permit an individual

who is a dictator, i.e., for a given profile of individuals, the function cannot reflect any one

individual’s preferences, irrespective of the preferences of all others in the profile.

Arrow proved that any thusly defined acceptable social welfare function, meeting all

these criteria, cannot decisively aggregate the preferences of a profile of individuals if there

are more than two alternatives. This game-changing result essentially meant that any social

welfare function violated the most basic thresholds for acceptability, thus any such function

would have to compromise on meeting at least one of these five criteria. Arrow, in discussing

this problem opined that compromising on an unrestricted domain was the only reasonable

alternative [Arr50].

One of the more notable approaches to this problem actually preceded Arrow’s work:

In 1948 Scottish economist Duncan Black wrote about an intriguing property of societal

preferences called single-peakedness [Bla48, Bla58]. Consider plotting a preference order-

ing with the horizontal axis representing a linear ordering of alternatives and the vertical

axis representing their rank in the ordering. If the resulting curve (drawn from joining all

alternative-representing points together) has a single peak (defined to be a point flanked by

either lower-ranking points on both sides, or only on one side if the peak starts or ends the

curve) then we can state that the preference ordering is single-peaked with respect to the

linear ordering on the horizontal axis. For a given profile of preferences, if there exists at

least one linear ordering such that all votes are single-peaked with reference to this linear

ordering, then we pronounce the profile to be single-peaked, or admitting the property of

single-peakedness.

Black showed that aggregate functions admitting single-peaked preference profiles (with

respect to some linear ordering) meet all of Arrow’s criteria except for unrestricted domain.

We lose this criterion as a linear ordering that induces single-peakedness does not exist for
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Figure A.1: A preference profile that is single peaked for the ordering abcd. The votes are
a > b > c > d (solid), b > c > d > a (dashed), and c > d > b > a (dotted).

every preference profile3. Therefore, if an aggregate function is to admit only single-peaked

input, it would have to exclude certain preference orderings, restricting the domain.

Another approach by Amartya Sen [Sen69] showed the existence of aggregate mecha-

nisms that have all of Arrow’s criteria but implement a relaxation of transitivity called

quasi-transitivity. This permits the existence of certain preferences that violate standard

transitivity—for example, for alternatives a, b, c you can have the following preference pro-

file: aIb, bIc, aPc. Sen also discussed an aggregate function where the input, instead of

individual preference orderings, was individual utility functions.

Brams and Fishburn showed that approval voting similarly has very desirable properties

when we restrict the preference domain [Nie84]. In the case that voters have dichotomous

preferences (that is, they can divide the candidates into two groups: one they they approve

of and one they do not) approval voting has many positive properties, including immunity

to strategic voting and the Condorcet criterion [BF83]. In the general case with unrestricted

preferences, the system no longer has these properties [Nie84].

The impact of Arrow’s work can be summed up in a quote attributed to Paul Samuel-

son [Pou08], “What Kenneth Arrow proved once and for all is that there cannot possibly

be . . . an ideal voting scheme.” The Gibbard-Satterthwaite Theorem held even more dis-

mal news: In addition to being less-than-ideal, all voting schemes were also vulnerable to

manipulation, unless they admitted dictators.

3The existence of a single-peaked profile would (partially) depend on the set of least-preferred alternatives
across all given orderings. For example, in the case of exactly three alternatives a, b, c, a profile of two or
more preference orderings having a total of two alternatives ranked last (say a, b), linear orderings acb and
bca exist relative to which the profile is single-peaked. For methods to determine single-peakedness, we refer
the reader to the work of Ballester and Haeringer [BH11] and Escoffier, Lang, and Öztürk [ELÖ08].



www.manaraa.com

98

Gibbard-Satterthwaite Theorem

In the early-to-mid 1970s Alan Gibbard [Gib73] and Mark Satterthwaite [Sat75] indepen-

dently extended Arrow’s Theorem for voting systems in a model that incorporated strategic

misrepresentation of preferences. They proved that no strategy-proof voting system existed

for elections with three or more alternatives, unless the voting system allowed dictators. A

strategy-proof voting system is one where no manipulating strategy can exist in elections us-

ing this voting system. While this result revolutionized voting theory, it had been speculated

previously: In 1960 William Vickrey when discussing individuals strategically misrepresent-

ing their preferences in Arrow’s model [Vic60], stated that “it is clear that social welfare

functions that satisfy the non-perversity [monotonicity] and the independence [IIA] postu-

lates and are limited to rankings as arguments, are also immune to strategy.” In addition,

the Dummett-Farquharson conjecture of 1961[DF61] parallels the Gibbard-Satterthwaite

Theorem.

The Gibbard-Satterthwaite Theorem transformed voting theory for two reasons: One

was the aforementioned result that nondictatorial voting rules were susceptible to strategic

voting (manipulation) in cases with three or more outcomes, and the second was the adoption

of the arcane science of game theory from Neumann and Morgenstern’s Theory of Games

and Economic Behavior [vNM44], published just four years prior to Arrow’s work. While

the influence of game theory was implied (and acknowledged) in Arrow’s social welfare

function [Wil72], the Gibbard-Satterthwaite Theorem proofs were more explicit in their

treatment of voting functions as game-theoretic mechanisms. This provided the field of

voting theory with a set of tools to examine a whole range of scenarios – for example,

the motivations for the electorate to vote dishonestly, or their reaction to changes in the

structure of the voting rule, or attempts to form coalitions to further their individual utility.

In Gibbard’s work, a voting scheme or social choice function is built upon a construct

called a game form. A game form is similar to a game construct in game theory [vNM44]

applied to a voting model: Players are voters, and any player’s strategies are the set of

all possible orderings of preferences (unless restricted for specific scenarios), over a set of

alternatives or candidates. Game forms, unlike games, do not have functions assign utilities

for each player for a given action (or chosen strategy) or for a scenario of chosen strategies

of all the players. Instead the social choice function has the concept of an honest or sincere

strategy: Among the set of strategies for each player is a specially marked strategy denoted

to be the honest representation of preferences for that player. This can be used to compare

outcomes (which may be a preference ordering or a single alternative) for a voter’s differ-

ent strategies, to see if one is less or more preferable to another in the honest ranking of

alternatives.

This social choice function will be immune to manipulation only if each voter has a
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dominant strategy, a strategy that will be at least as good as any other for that voter no

matter what any other voter does. Otherwise, if a voter does not have a dominant strategy,

then they might possibly be motivated to change their vote from their true preferences in

order to obtain a better outcome. A social choice function where each voter has a dominant

strategy (and hence is immune to manipulation) is said to be straightforward.

The proof of the Gibbard-Satterthwaite Theorem relies on the Vickrey conjecture: A

voting scheme (defined with the property of unrestricted domain) is strategy-proof iff it has

the properties of IIA and unanimity. Since Arrow showed that no aggregate function with

more than two outcomes can satisfy all of his model’s criteria, such a voting system then

is necessarily a dictatorship. In other words, we have that any voting system with at least

three outcomes will either be a dictatorship or it will be manipulable. A similar result, the

Duggan-Schwartz Theorem [DS00], exists for voting systems that elect multiple candidates.

The Gibbard-Satterthwaite Theorem presents a problem and accepts a solution similar

to Arrow’s Theorem. By Black’s results, voting schemes that permit only single-peaked pref-

erences restrict the domain of the function, but can have all other Arrow criteria, including

unanimity and IIA, which together imply strategy-proofness. Thus, relaxing the condition

of unrestricted domain is necessary for voting schemes that resist manipulation. Another

example of this is Gibbard’s development of probabilistic mechanisms [Gib77, Gib78]. Pro-

caccia took a similar approach by designing strategy-proof probabilistic voting systems that

are similar to standard deterministic voting systems [Pro10].

Computational Difficulty of Manipulation

Another solution to the problem of inherent manipulability in voting was proposed by

Bartholdi along with Tovey, Trick, and Orlin in a series of papers that started the field

of computational social choice [BTT89a, BTT89b, BO91]. Their approach was to select

voting schemes where manipulation is computationally difficult to carry out, i.e. where the

manipulation problem is NP-hard. Our definition of the manipulation problem is that of

constructive coalitional manipulation, i.e., does there exist a set of votes for the manipulat-

ing coalition that causes their preferred candidate to win the election? This subsumes the

case of a single manipulator and contrasts with destructive manipulation, which is concerned

with preventing a certain candidate from winning.

Bartholdi, Tovey, and Trick’s initial work also highlighted the problems of selecting

systems with complexity. Their Impracticality Theorem [BTT89b] is another instance of

systems meeting seemingly reasonable attributes thereby inducing undesirable properties.

The theorem states that any fair voting system requires excessive computation to deter-

mine the winner, making it impractical—a highly disturbing result. This theorem followed
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work by Kemeny [Kem59], Young and Levenglick [YL78] and Gardenfors [Gar76].

According to Bartholdi, Tovey, and Trick, a voting system is fair if it has the Condorcet

criterion, the property of neutrality (i.e., it is symmetric in its treatment of candidates, a

property implied by IIA [GPP09]), and the property of consistency (i.e., if disjoint subsets

of the voters voting separately arrive at the same preference ordering, then voting together

always produces this same preference ordering as well). Their theorem states that compu-

tation of the winner in any such fair voting system is NP-hard.

The above-mentioned property of consistency (also called convexity [Woo94] and sepa-

rability [Smi73]) has been proved to be present in ranked voting systems (those in which

a vote is a ranking or ordering of preferences) only if they happen to be scoring protocols

as well (where the alternatives receive a certain number of points depending on their posi-

tion in the ordering) [You75]. Scoring protocols are often incompatible with the Condorcet

criterion (refer the aforementioned debate on Condorcet versus Borda) thus unsurprisingly

so far we know of only one voting system, Kemeny scoring [Kem59], that meets all three

conditions [YL78]. Kemeny scoring is then NP-hard, but additionally it has been shown to

be complete for parallel access to NP [HSV05].

However, this does not imply other voting systems are immune to having an intractable-

winner problem: Systems such as Dodgson meet only two of the three fairness conditions—

that of the Condorcet criterion and neutrality but not consistency—but computation of the

winner in Dodgson is known to be not only NP-hard [BTT89b] but complete for parallel

access to NP [HHR97], similar to the result for Kemeny scoring.

Research focusing on tractable voting systems4 was more promising: While Bartholdi,

Tovey, and Trick gave us a greedy algorithm that finds a manipulating vote for several

tractable voting systems in polynomial time [BTT89a], two voting systems—second-order

Copeland and single transferable vote [BTT89a, BO91]—proved to be resistant and were

shown to have a manipulation problem that is NP-hard. Research in this field remained

dormant for the next fifteen years until a revival starting in 2006 brought about results for

most common tractable voting systems.

In this chapter we are concerned with a restricted version of the manipulation problem.

We survey tractable voting systems that resist manipulation in the unweighted coalitional

manipulation (UCM) model with only a constant number of manipulators. This limited case

subsumes hardness results in the weighted coalitional manipulation (WCM) model or with

variably sized coalitions, thus making a case for UCM being a stronger class of manipulation.

We include both the initial work of Bartholdi, Tovey, and Trick [BTT89a] and Bartholdi

and Orlin [BO91] that achieved the first results in this area and the recent resurgence of

interest in this problem that has resulted in a number of new outcomes.

4A voting system is tractable if calculating the winner takes at most polynomial time.
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Terms Defined

An election is defined to be an instance of a voting system, comprising a voting rule vr,

a set of candidates C and a set of votes V . A voting rule is a function that takes as

input a set of votes and a set of candidates and outputs a set of winners. Unless explicitly

stated otherwise, references to n and m are defined as follows: n = ||V || and m = ||C||.

A vote is defined to be a linear ordering over the set of candidates. The advantage of a

candidate ci over cj (hereafter referred to as adv(ci, cj)) is the number of votes that rank

ci ahead of cj with values ranging from 0 to n. The net advantage of a candidate ci over

cj is adv(ci, cj) − adv(cj , ci), with values range from −n to n. A netadv score between

two candidates ci and cj is represented as netadv(ci, cj). By definition we can see that

netadv(ci, cj) = −netadv(cj , ci), thus one netadv score can represent both directions.

UCM (unweighted coalitional manipulation) is defined to be a decision problem as fol-

lows.

Given An election, namely, a voting rule vr, a set of voters V such that V = VNM ∪ VM ,

where VM is the subset of voters that form the manipulating coalition and VNM is all

other voters, and a set of candidates C containing a distinguished candidate c.

Question Does there exist a set of votes for VM such that vr over the complete set of votes

yields c as the winner?

We use the format UCM2Cope to refer to the UCM problem in second-order Copeland

and likewise for other election systems.

A.2 UCM in Single Transferable Vote

Single transferable vote (henceforward STV) is a voting system with a long history. As

esteemed a figure as John Stuart Mill said it was “among the greatest improvements yet

made in the theory and practice of government.” It determines the winners with a simple

multiround procedure that redistributes votes placed for less popular candidates. Also,

unlike many of the esoteric voting systems studied in voting theory, STV actually has a

history of being used for real-world political elections, in the United States and around the

world.

The STV vote tallying procedure is as follows. Give a point to each candidate for

each first-place vote he or she receives. If any candidate is the majority winner (i.e. with

more than half the total points), that candidate will be the only winner of the election.

If no majority winner exists, then select the candidates with the fewest number of points,

remove them from consideration, and for the voters who currently give their support to
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these candidates, reallocate their support by giving their points to the next highest ranked

candidate on their ballots still under consideration. Repeat this procedure until a winner is

chosen or all candidates are removed. If the latter occurs, then all of candidates that were

removed in the last round will be the winners.

The complex, shifting behavior of STV with multiple candidates is what gives it the

resistance to manipulation we discuss here, but it also leads to STV failing to possess some

very desirable voting system characteristics. Notably it does not possess the property of

monotonicity: It is possible for a voter to increase his or her ranking of a candidate and for

that candidate to subsequently do worse in the election. This was enough for Doron and

Kronick [DK77] to refer to it as a “perverse social choice function,” and it certainly is a flaw

of concern.

We show resistance to manipulation through a conventional, if difficult, reduction based

on Bartholdi and Orlin’s work [BO91]. Their work was actually directed towards showing

that the EFFECTIVE PREFERENCE problem is NP-complete. EFFECTIVE PREFER-

ENCE is the problem of finding if a single voter can cause the preferred candidate to win

an election. This is effectively the same as UCM with a single manipulator, and we will

prove that this problem is NP-hard for STV with a proof based on the aforementioned

work [BO91]. The proof is structured as a reduction from the exact cover by three-sets

problem.

Exact Cover by Three-sets (X3C)

Given A set D = {d1, . . . , d3k} and a family S = {S1, . . . , Sn} of sets of size three of

elements from D.

Question Is it possible to select k sets from S such that their union is exactly D?

In other words, the goal of the problem is to find if there is an appropriately sized set of

subsets which covers each of the elements in D. Since each Si has exactly three elements and

due to the required size of the subset, it must be an exact cover with no repeated elements

in all subsets chosen.

Proof. We will describe a reduction from an instance of X3C to a instance of the manipula-

tion problem for STV. Note that since the reduction will only require a single manipulator,

this shows that the manipulation problem for STV is NP-hard even for only a single ma-

nipulator.

Given an instance of X3C (D,S) we construct the election as follows. Let the following

comprise the candidate set C:

• The possible winners c and w;
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• The set of “first losers” a1, . . . , an and a1, . . . an, one of each corresponding to each

subset Si;

• The “second line” b1, . . . , bn and b1, . . . , bn, one of each corresponding to each subset

Si;

• The w-bloc d0, . . . , d3k, each of whose voters will just prefer them to w;

• The “garbage collector” candidates g1, . . . , gn.

We will now describe the set of voters. Where we use ellipses, the remainder of a vote is

arbitrary for our purposes and will not effect the result of the election.

• 12n voters with preference (c, . . . );

• 12n− 1 voters with preference (w, c, . . . );

• 10n+ 2k voters with preferences (d0, w, c, . . . );

• For each i ∈ {1, . . . , 3k}, 12n− 2 voters with preference (di, w, c, . . . );

• For each i ∈ {1, . . . , n}, 12n voters with preference (gi, w, c, . . . );

• For each i ∈ {1, . . . , n}, 6n+4i− 5 voters with preference (bi, bi, w, c, . . . ) and for the

three j such that dj ∈ Si, 2 voters with preference (bi, dj , w, c, . . . );

• For each i ∈ {1, . . . , n}, 6n+4i−1 voters with preference (bi, bi, w, c, . . . ) and 2 voters

with preference (bi, d0, w, c, . . . );

• For each i ∈ {1, . . . , n}, 6n + 4i − 3 voters with preference (ai, gi, w, c, . . . ), 1 voter

with preference (ai, bi, w, c, . . . ), and 2 voters with preference (ai, ai, w, c, . . . );

• For each i ∈ {1, . . . , n}, 6n + 4i − 3 voters with preference (ai, gi, w, c, . . . ), 1 voter

with preference (ai, bi, w, c, . . . ), and 2 voters with preference (ai, ai, w, c, . . . ).

This reduction works by requiring the elimination order of a subset of the candidates to

correspond to an exact cover over B in order for c to win the election. Namely, c will win

the election iff I = {i | bi is one of the first 3n candidates to be eliminated } is an exact

cover. Furthermore, there is a preference order for a single manipulator that will force I to

be an exact cover if one exists. We will now consider the relevant properties of the election

and show that this is the case.

Since this election is a single-winner STV election with more than two candidates, the

scoring process will proceed for a number of rounds and a number of candidates will be
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eliminated as the rounds progress. The first 3n candidates to be eliminated will be a1, . . . , an,

a1, . . . , an, and exactly one of bi or bi for every i ∈ 1, . . . , n.

Candidate c initially has 12n votes, while c’s primary rival w has 12n − 1. Every voter

that does not have c as their first choice ranks them directly below w, and so c can only gain

more votes if w is eliminated. In order to do so, the manipulator must ensure that w does

not gain additional votes before he or she is eliminated, as otherwise w would have gained

votes against c and c would have been eliminated first. The manipulator must consequently

make sure that no candidate is eliminated such that any voter most prefers that candidate

and prefers w second most. This is the case with every voter that prefers one of the d

candidates, so w will gain a large number of votes if one of them is eliminated. Therefore

if any d candidate is eliminated before w, c cannot possibly win. For every bi candidate

that is eliminated, bi gains a large number of votes, pushing it higher than 12n in score and

preventing them from being eliminated early. Also, for each dj ∈ Si, dj gains two votes,

pushing them high enough to not be eliminated early. Thus eliminating bi protects the d

candidates associated with the set Si. Conversely, for every bi that is eliminated, d0 gains

two votes and bi gains a large number of votes, preventing bi from being eliminated early.

Thus for every i only one of bi or bi can be eliminated before c or w.

The a candidates are the other candidates that can be eliminated early. For every ai that

is eliminated, ai gains two votes, bi gains one vote, and gi gains the rest of ai’s votes. The

effect of this is that now ai has been promoted above bi and bi in the overall ranking, and

since bi also gained a point over bi, bi will be the next to be eliminated instead of bi. Thus

by controlling which of ai or ai is eliminated first, we control which of bi or bi is eliminated

early.

Thus we can show that the candidate c will win the election iff I = {i | bi is one of

the first 3n candidates to be eliminated } is an exact cover. We know that either bi or

bi will be among the first 3n eliminated candidates. If bi is the one eliminated, then for

every dj ∈ Si, dj will gain two votes and will have at least 12n votes total, preventing them

from early elimination. If I is an exact cover, this will be true for every dj as each of them

is covered by some selected bi and so each of them will win over w. Also, since d0 gains

two points for every one of the bi eliminated, d0 will gain at least 2(n − k) votes and will

receive at least 12n votes overall, pushing them over the score of w as well. Thus after the

first 3n candidates have been eliminated, w will have the least score with 12n − 1, having

gained no votes other than his or her initial first-place votes, and he or she will be the next

candidate to be eliminated. The candidate c will then gain a large number of votes from

the elimination of w and will go on to win the election.

If the set I defined above does not correspond to an exact cover, c cannot win the election.

If I is not an exact cover, some candidate dj will not gain the two points from a corresponding
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bi being eliminated. Thus dj will only have 12n − 2 votes after the first 3n candidates are

eliminated while the other remaining candidates have at least 12n− 1, leaving dj the next

to be eliminated. The candidate w then gains points from dj ’s elimination, preventing c

from gaining points against w and winning the election.

If an exact cover exists, a single manipulator can construct his or her preference order

as follows to ensure c is a winner. For an exact cover I, if i ∈ I, let the ith candidate in the

preference order be ai and otherwise ai. The rest of the preference order is arbitrary. This

will result in the following order of elimination of the first 3n candidates: For i ∈ I, ai, bi, ai

will be eliminated in that order as the 3i − 2, 3i − 1, 3i candidates. For i /∈ I, ai, bi, ai will

instead be the candidates to be eliminated. For i ∈ I, since this preference ranks ai over ai,

ai will have one more vote and thus ai will be eliminated first. This then gives two votes to

ai and one more to bi, making bi the next least preferred candidate. When bi is eliminated,

bi gains a large number of votes, so ai is now the least preferred candidate and is eliminated

next. The rounds proceed similarly in the case that i /∈ I and ai is preferred instead. Thus

the set {i | bi is one of the first 3n candidates to be eliminated} will correspond to an exact

cover and c will win the election.

If no exact cover exists, no matter how a manipulator votes, at least one of the d

candidates will not receive the protective boost from the elimination of the corresponding b

candidate as previously described. This candidate will then be eliminated early, leading to

w being boosted past c in votes and preventing c from winning.

Thus even just setting the first n rankings for the ballot of a single manipulator for STV

is NP-hard, and the system is resistant to this very limited case of manipulation.

A.3 UCM in Borda Voting

Borda voting is a classic voting system dating back at least to the eighteenth century. It

was introduced by the French mathematician and engineer Jean-Charles de Borda to remedy

the failure of plurality to reflect the wishes of the electorate when used with more than two

candidates: The candidate that gets the most votes will not necessarily be preferred to the

other candidates. It is very similar to a system introduced in the 15th century by Cardinal

Nicolaus Cusanus [Szp10].

It has rich and varied history of real-world use: In some form it has been used in political

elections in Slovenia and the micronesian countries of Kiribati and Nauru, in the Eurovision

contest, the election of the board of directors of the X.Org foundation, and even in sports,

in the election of the Most Valuable Player award in Major League Baseball. Borda is one

of a class of systems known as scoring protocols, where each vote awards points to each

candidate depending on their ranking in the vote. The winners are candidates with the
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highest sum of points over all the votes. In the case of Borda voting, candidates receive

linearly descending points for progressively less favorable positions in the votes, with the

top position awarding m− 1 points, the next position awarding m− 2 points, and on down

to 0 points for the lowest position.

It was long an open problem whether UCMBorda was hard in general, though manip-

ulation with a single manipulator has long been known to be easy [BTT89a]. A greedy

algorithm that can find a set of successful manipulating votes in polynomial time that is

at most one larger than the optimum manipulative coalition size is known as well [ZPR09].

Recently, Betzler, Niedermeier, and Woeginger [BNW11] and Davies, Katsirelos, Narodyt-

ska, and Walsh [DKNW11] proved Borda-manipulation to be NP-hard for instances with

two or more manipulators.

Both Betzler, Niedermeier, and Woeginger [BNW11] and Davies et al. [DKNW11] prove

their results by reduction from the problem of 2-Numerical Matching with Target Sums,

a known NP-hard problem [YHL04] that closely corresponds to the problem of allocating

points to the nonfavored candidates in the election.

2-Numerical Matching with Target Sums (2NMTS)

Given A sequence a1, . . . , ak of positive integers with
∑k

i=1 ai = k(k+1) and 1 ≤ ai ≤ 2k.

Question Are there permutations ψ1 and ψ2 of 1, . . . , k such that ψ1(i) + ψ2(i) = ai for

1 ≤ i ≤ k?

Preliminaries For manipulation to work, nonfavored candidates must be ranked low

enough in manipulative votes such that the number of points they gain by said votes do

not prevent the preferred candidate from winning. To that end we define the gap to be

the maximum number of points nonfavored candidates can gain by all manipulative votes

while still allowing the preferred candidate to win. In any Borda instance with a favored

candidate c∗, m other candidates, and t manipulators, the gap gi for a candidate ci is

score(c∗) + t ∗m − score(ci). Here score(c) refers to the Borda score for the candidate c

over the nonmanipulator votes. We assume these gap values g1, . . . , gm to be ordered in a

nondecreasing fashion.

Result 1 Recall that the awarded points for the last j candidates in a vote will range

from j − 1 to 0, hence the sum of their points equals j(j − 1)/2. Thus for any successful

manipulation instance, we must have that
∑j

i=1 gi ≥ t · j(j − 1)/2 for each j ∈ {1, . . . ,m}.

We define an instance to be tight if
∑j

i=1 gi = t · j(j − 1)/2. Thus, in a tight instance,

for manipulation to be successful, the number of points a nonfavored candidate gains from

manipulative votes must be exactly equal to its gap value.

Proof. Given any instance of 2NMTS we construct a UCMBorda instance (C, V, p) as follows.

The candidate set C consists of candidates c1, . . . , ck and the preferred candidate p, and thus
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the range of Borda points is from 0 to k. The set of votes V consists of a manipulating

coalition M of size two and a set NM of nonmanipulating votes of size three. The instance

is constructed such that the gap for any nonfavored candidate gi = 2k− ai. In this context,

the Borda problem can be considered as follows: For every nonfavored candidate ci, can we

assign a position in each of the manipulating votes such that the points ci gains from said

votes is ≤ gi? This constructed instance of Borda manipulation will have a solution if and

only if the 2NMTS instance has a solution.

Direction 1 Given a solution to 2NMTS, we can obtain a solution for the Borda instance as

follows: Preferred candidate p is placed in the first position in both manipulating votes. A

solution to 2NMTS exists so we have two orderings ψ1(i), ψ2(i) such that ψ1(i)+ψ2(i) = ai.

For every candidate ci, (1 ≤ i ≤ k) set its position to ψ1(i) + 1 in the first manipulative

vote, and ψ2(i) + 1 in the second manipulative vote. The corresponding Borda points are

obtained from subtracting this position number from ||C|| = k + 1. Therefore the points ci

has gained from both manipulative votes is (k+1− (ψ1(i)+1))+(k+1− (ψ2(i)+1)) which

equals 2k − ai = gi, permitting p to win.

Direction 2 Given a solution to the Borda instance, we have a solution for 2NMTS as

follows: By construction,
k∑

i=1

gi =
k∑

i=1

(2k − ai).

Since
k∑

i=1

ai = k(k + 1),
k∑

i=1

(2k − ai) = k(k − 1).

Hence, this Borda instance is tight for j = k and t = 2 (from Result 1) and con-

sequently each nonfavored candidate Ci gains exactly gi points from the manipulative

votes. If posi(1), posi(2) are the positions for ci, points gained from these positions total

(k+1− posi(1)) + (k+1− posi(2)) = gi = 2k− ai, which yields posi(1) + posi(2) = ai +2.

Therefore setting ψ1(i) = posi(1)−1 and ψ2(i) = posi(2)−1 gives us a solution for 2NMTS.

As mentioned earlier, we assume by construction gi = 2k−ai. This requires constructing

the set of nonmanipulator votes such that the deficits for each candidate relative to the

preferred candidate map precisely to the target sums in the original problem. Executing this

involves complicated construction and the addition of a large number of “dummy” candidates

to pad out the remaining positions and to precisely set the required deficits for the primary

candidate set [BNW11] (in Davies et al., such padding is done with voters [DKNW11]).

Thus the constructed instance has a much larger candidate set than a voter set (though it

remains polynomially bounded), but it suffices to prove the desired hardness result.
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A.4 UCM in Copeland Elections

Copeland voting is a voting system with a long history. One version of the system was dis-

covered by the 13th century mystic Ramon Llull, and then another variation was discovered

by A.H. Copeland in the 1950’s. It is a Condorcet voting system.

Copeland voting is in fact a family of voting systems, parametrized on how ties are

handled. In Copelandα, the score of a candidate c in an election E is winsE(c) + α∗tiesE(c),

where winsE(c) and tiesE(c) denote the number of pairwise victories and ties of the candidate

c in the election E. Llull’s system is Copeland1, while “Copeland voting” has been used to

describe Copeland0.5 or to describe Copeland0. Different parameter values subtly alter the

behavior of the system and complicate the task of analyzing its computational properties,

as we will explore.

When constructing an election for a reduction, we do not have to explicitly construct

the voter set. It suffices to specify the number of voters that prefer every candidate over

each other candidate, or even just the net advantage function—the difference of the number

of voters that prefer one candidate over the other and vice versa. This relation can be

conveniently represented as a weighted directed graph. It is also possible to go in the

other direction and map from an election graph to a set of voters that will express that

election graph, provided that all the edge weights are even. We can construct such a set

in polynomial time in the size of the set of candidates and in the maximum value of the

net advantage function. As long as our construction can be limited to a net advantage

function polynomially bounded in value, we can subsequently construct a concrete election

in polynomial time and complete the reduction [FHS10].

It is also not necessary to specify the entire election graph in order to construct an

consistent election. Using this technique greatly aids in the construction of hardness proofs,

as we can then more easily construct an election graph with the properties we require without

immediately specifying the details of the votes.

UCMCopeα is in P when there is only one manipulator [BTT89a], but it is known to be re-

sistant to manipulation even with two manipulators for α ∈ [0, 0.5)∪(0.5, 1] [FHS10, FHS08]

Different proofs were required to show resistance to manipulation for different parameter

ranges, as the behavior of the system changes in subtle but significant ways with different

values of the parameter. We will describe the proof that was used to show hardness for

Copelandα for α ∈ {0, 1}.

Both of these cases were proved by Faliszewski, Hemaspaandra, and Schnoor [FHS10]

through similar reductions from X3C defined in section A.2. The proof constructs a

UCMCopeα instance from an X3C instance (D = {d1, . . . , d3k},S = {S1, . . . , Sn})

This reduction is greatly aided by the technique mentioned earlier of building a simplified
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election representation rather than specifying the exact votes that make up the election. In

fact, we do not need to describe the entire set of candidates. It is enough to describe a partial

set of significant candidates, the net advantage score between each pair of these candidates,

and the lead in Copeland score that each specified candidate has over the distinguished

candidate. It suffices that we can then easily construct a complete election that matches

the specified behavior.
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Figure A.2: Gadget used in Copeland1 manipulation NP-hardness proof

The set of candidates includes primary and other auxiliary candidates corresponding

to each set Si, two for each element dj , and one primary adversary candidate c. The

election is constructed, mapping from the X3C instance, by constructing a gadget for each

set Si composed of the specified information. All of the d candidates are given one point of

advantage of Copeland score over the distinguished candidate, so each must be made to lose

one pairwise contest. However, in order to do so one must lose to the primary candidate

for a set Si of which that element is a member. The Si candidates, however, must also be

made to defeat the adversary candidate c as c will start with a significant advantage over

the distinguished candidate. Thus we must find an exact cover so we only have to use k of

the Si candidates to beat all the d candidates so we will still have enough left to beat c.

A.5 UCM in Second-Order Copeland

Solutions for breaking ties in Copeland voting attempt to choose the more “powerful” can-

didate as the winner, which can be defined in a number of ways. One such method is

second-order Copeland. It selects the candidate whose set of defeated opponents (hereafter

referred to as DOc for a candidate c) has the higher sum of Copeland scores. We will let

sum score(S) for a set of candidates S be the sum of the Copeland scores for candidates in

S, and so sum score(DOc) gives the second-order Copeland score for a candidate c.

Second-order Copeland has been used by the National Football League and the United
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States Chess Federation to break ties, and has a special place in voting theory: It was the

first of the tractable voting systems for which the problem of manipulation was shown to

be NP-complete, even in the case of just one manipulator [BTT89a].

The problem of unweighted coalitional manipulation in second-order Copeland, hereafter

referred to as UCM2Cope, is NP-complete even for one manipulator [BTT89a]. Verifying a

given solution is clearly in P as we simply have to calculate Copeland scores and second-

order Copeland scores for each candidate. To prove UCM2Cope is NP-hard we show a

polynomial-time reduction from 3,4-SAT, a known NP-hard problem [Tov84].

3,4-SAT

Given A set U of boolean variables, a collection of clauses Cl, each clause composed of

disjunctions of exactly three literals, which may be a variable or its complement, and

each variable occurs in exactly four clauses.

Question Does there exist a boolean assignment over U such that each clause in Cl contains

at least one term set to true?

To facilitate the reduction we construct a graph representation of a second-order

Copeland election that encodes the given 3,4-SAT instance. We will use a election graph

representation with vertices representing candidates and directed edges representing the

result of pairwise contests.

Proof. Given a 3,4-SAT instance, we create a second-order Copeland election graph as

follows: Every clause (C1 to C||Cl||) and every literal is a candidate, represented as a vertex

in our graph. The manipulating coalition’s chosen candidate is a separate candidate C0. All

pairs of vertices have directed edges between them, representing decided pairwise contests,

except for any variable and its complement. The decided contests cannot be overturned by

our manipulators, while undecided contests can be shifted in either direction according to

the manipulating vote. Clauses beat (that is, have a directed edge to) literals they contain,

and lose to all other literals.

In addition to these candidates derived from the SAT instance, we pad the election with

a number of auxiliary candidates in such a way to achieve the desired Copeland scores and

second-order Copeland scores for each of the candidates. We will have that all the clause

candidates and C0 are tied with the highest Copeland score. We will also have that each

clause candidate Ci has sum score(DOCi
) = sum score(DOC0

)− 3.

The second-order Copeland score for C0 will be independent of the variable-complement

contests. For all possible outcomes of the variable-complement contests, C0 still beats every

candidate except for the clause candidates. Recall that the elements for every clause can-

didate’s defeated-opponent set are their component literals. Their second-order Copeland
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Figure A.3: A partial representation of the resultant election-graph. Clauses represented
are C1(x1 ∨ x2 ∨ x3), C2(x1 ∨ ¬x2 ∨ x3), C3(¬x1 ∨ ¬x2 ∨ x3) and C4(x1 ∨ x2 ∨ ¬x3). Each
clause vertex beats the variables (or their complements) that are its component literals.
The dotted lines indicate undecided (second-order Copeland) contests between variables
and their complements.

scores and the final result of the election will then depend on how each of the variable-

complement contests are decided.

Consider if any clause candidate Ci’s literals win all their contests. The

sum score(DOCi
) increases by 3 points and Ci is tied with C0 for first place. Therefore,

in order for C0 to be the unique winner, at least one element of each clause candidate’s

defeated-opponent set must lose at least one of their contests. Recall that the elements of

any such defeated-opponent set are variables and their complements. For any variable x,

we can interpret a directed edge from x to ¬x as setting x to true. A vote that allows C0

to win, then, would correspond exactly to each clause having at least one true term. In

other words, we have a solution for UCM2Cope if and only if we have solution for 3,4-SAT.

Therefore UCM2Cope is NP-hard with just a single manipulator.

A.6 UCM in Maximin

Maximin voting, also known as the Simpson-Kramer method, is a typical Condorcet voting

system. As such it deals with contests between pairs of candidates, specifically their net

advantage scores. To find the winner under Maximin, given a netadv function over the set

of candidates, we first select the lowest netadv score for each candidate k in C, i.e., we

select the minimum score for netadv(k, k′) for all k′ in C such that k′ 6= k. The winner

is the candidate with the highest such score. We can trivially see that a candidate with a
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minimum netadv score greater than 0 will be the Condorcet winner, and there can only be

one such candidate, and so this is a Condorcet voting system.

Calculating the Maximin winner is easily seen to be polynomial in the size of the election,

but Xia, Zuckerman, Procaccia, Conitzer, and Rosenschein [XZP+09] prove that for two or

more manipulators the problem of UCMMaximin is NP-complete.

UCMMaximin is NP-complete for two or more manipulators [XZP+09]: Verifying an in-

stance is easily seen to be polynomial in the number of candidates as we can calculate the

winner in polynomial time. To prove UCMMaximin is NP-hard we construct a polynomial-

time reduction from the vertex-disjoint-two-path problem, known to be NP-complete [LR78].

Vertex-Disjoint-Two-Path problem (VDP2)

Given A directed graph G and two sets of vertices u, u′ and v, v′ such that all four vertices

are unique.

Question Do there exist two paths u→ u1 → . . .→ uj → u′ and v → v1 → . . .→ vk → v′

in G such that each path is a set of vertices disjoint from the other?

Proof. To facilitate our reduction-construction from a graph problem such as the vertex-

disjoint-two-path problem to Maximin, we first construct a graph-representation of Maximin

elections. A complete set of votes is not required to represent an election.5 We can construct

the same given just a netadv (or adv) function. Also, there exists a bijection between the

netadv function and directed edges of an antisymmetric graph such that given one set, we

can represent it in terms of the other.6

Pcoal is the set of votes of the manipulating coalition and Pnoncoal is the set of all other

votes. The term netadvnoncoal indicates the netadv score obtained by considering only the

noncoalitional votes with netadvcoal similarly defined. M is the size of the coalition and c

is the candidate supported by the manipulating coalition.

Given a VDP2 instance, that is a graph G(VG, E) and vertices u, u′, v, v′ ∈ V , we obtain

a graph G′ using the following constructions and assumptions:

• Every vertex in our graph is reachable from u or v.

• There are no directed edges u→ v′ or v → u′.

• We add special edges u′ → v and v′ → u such that EG′ = E ∪ {(u′, v), (v′, u)}.

Our UCMMaximin instance then is as follows:

• Set of candidates C = VG.

5See Section A.9.
6See Section A.10.
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• The set of Pnoncoal preferences.
7

– ∀c′ ∈ C : c′ 6= c, netadv(c, c′) = −4M

– netadv(u, v′) = netadv(v, u′) = −4M

– For all other edges (x, y) in E, netadv(y, x) = −2M − 2

– For all other vertex pairs a, b, netadv(a, b) = 0

Regarding Pcoal votes, we can freely assume that every coalition vote will rank c first,

thus giving netadvcoal(c, c
′) = M and netadvnoncoal∪coal(c, c

′) = −3M . Thus, in our con-

struction, scores for netadv(c, c′) are fixed for all candidates c′ ∈ C. In order for c to be the

winner, at least one netadv score must be less than −3M for every other candidate. We

will see that in our construction this can occur if and only if there are two vertex-disjoint

paths in G′.

Direction 1

The existence of vertex-disjoint paths u → u1 → . . . → uj → u′ and v → v1 → . . . →

vk → v′ yields a Pcoal that makes c the winner. In order to construct the manipulator

preferences, we will make use of a connected subgraph over G′ containing all the vertices,

but with u→ . . .→ u′ → v → . . .→ v′ → u as the only cycle in the graph.

We can construct Pcoal votes in 3 parts as follows: Each manipulator vote will rank c

the highest, followed by the vertex-disjoint-path vertices, followed by the other vertices.

Other-vertex ordering: These vertices will be ordered in the votes based on a linear order

extracted from the single-cycle subgraph.

Vertex-disjoint-path orderings: We have two vertex-disjoint-path orderings: u → . . . →

u′ → v → . . . → v′ and v → . . . → v′ → u → . . . → u′ and thus two possible vote

constructions for Pcoal. We construct m − 1 votes as per the first ordering and 1 vote as

per the second.8 Thus netadv(c, c′) increases by m points but every other netadv score

increases by less than m points, making c the winner. The calculations are as follows for

the complete (coalitional and noncoalitional) set of votes:

• netadv(u, v′) = −4M + (M − 1)− 1 = −3M − 2

• netadv(v, u′) = −4M + 1− (M − 1) = −5M + 2

For any other candidate c′ 6∈ {c, u, v}, we can see that there exists some candidate d in

every vote of Pcoal that beats c
′, i.e., the lowest netadv score for c′ is netadvcoal(c

′, d) = −M ,

and thus for the complete set of votes the (lowest) netadv for any such candidate c′ is no

7As mentioned in Section A.9, we can easily convert from a netadv function over the set of candidates
to an equivalent set of votes. Such a Pnoncoal would also be polynomial in size relative to the number of
candidates.

8Switching these orderings results in the same outcome.
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more than −2M − 2−M = −3M − 2. All the above netadv scores are less than −3M for

all values of m ≥ 2, thus c is the winner.

Direction 2

The existence of a Pcoal that makes c a winner yields a positive VDP2 instance in the

graph G′:

Since c is the winner, we know that for any other candidate c′ in C, there exists a

candidate d that beats c′ such that:

• netadv(c′, d) < −3M ;

• There exists an edge (d, c′) in G′;

• d is ranked higher than c′ in a majority of the total votes and in at least one vote in

Pcoal—the proof of this is as follows.

Consider such an edge (d, c′):9 either (d, c′) is one of the special edges (v′, u), (u′, v′) or

(d, c′) ∈ E. If (d, c′) is a special edge, then at least one vote in Pcoal must prefer d to c′

(since netadv(c′, d) < −3M). If (d, c′) ∈ E, then all M votes in Pcoal must prefer d to c′.

For this d, we can choose a candidate that beats it with sufficient margin, and continue

to find such a candidate for the previous choice of d.10 That is, we find a d for c′ starting

with say, u and then continue to find such a candidate after setting d to c′. There is only

one possible d for (each case of) c′ = u, v. Thus, we obtain a set of chained pairs. This,

coupled with the facts that any vertex is reachable from u, v and the existence of special

edges (both by construction), we obtain a cycle of vertices which breaks into disjoint sets

along the special edges. Obtaining such a set of pairs with netadv less than −3M is not

possible without the existence of (c-winner-making) Pcoal (as per the third item above).

A.7 UCM in Tideman-Ranked-Pairs

Tideman-Ranked-Pairs (TRP) was conceived by Nicolaus Tideman in 1987 when attempt-

ing to define a voting system that “almost always” has the property of independence of

clones [Tid87]. It is defined as follows: Given a netadv function over the set of candidates,

create a list by ranking the pairs in descending order of their scores. In the case of a tie

between two netadv pairs, e.g., netadv(a, b) = netadv(x, y), we break ties by ordering the

pairs lexicographically by some arbitrary ordering of the candidates. We add the top-scoring

pair to an election-graph G11 and remove it from the list if the resultant graph does not

9If there exists more than one such d we choose one arbitrarily.
10Choosing such a d is formalized in the proof of Xia et al. as a composite function f .
11As usual, VG = C and directed edges represent netadv.
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contain a cycle. Otherwise we skip this pair and move on to the next one in the list. We

continue until have considered all pairs. Since we now have a directed acyclic graph, there

must exist a source vertex, which we state to be the TRP winner.

Xia, Zuckerman, Procaccia, Conitzer, and Rosenschein [XZP+09] found that UCMTRP

is NP-complete even for one manipulator. We can easily see that verifying a given solution

to UCMTRP is in P. UCMTRP was proven to be NP-hard by a polynomial-time reduction

from 3SAT.

Three-Conjunctive-Normal-Form Satisfiability (3SAT)

Given A set U of boolean variables, a collection of clauses Cl, each clause composed of

disjunctions of exactly three literals, which may be a variable or its complement.

Question Does there exist a boolean assignment over U such that each clause in Cl contains

at least one literal set to true?

Proof. Given a 3SAT instance, we construct a UCMTRP election graph as follows. Clauses

C1 . . . C||Cl|| are vertices as is the coalition’s preferred candidate c. For each clause Ci, we

construct six other special-clause candidates—three for the literals it contains and three

for their complements. Ci beats (has a directed edge to) the special-clause candidates

corresponding to the literals it contains, which in turn beat the literals they correspond to.

We also have a C ′
i such that it is beaten by the complement of the literals in Ci. Candidate c

starts out beating the Ci candidates but gets defeated (though by a smaller margin) by the

C ′
i candidates. The intuition of this correspondence is that the edges beating c are so weak

and so far down the ordering that they are not added, leaving c to be the source vertex (and

TRP winner) iff there exists a solution to 3SAT. Thus the UCM problem is NP-complete

even in the case of a single manipulator. The proof of Xia et al. relies on mathematical

gadgets to achieve this correspondence [XZP+09].

A.8 Conclusion

Our survey of UCM results can be seen as qualifying election systems by a single metric.

Determining which election system is superior is an ongoing debate often reflecting differing

philosophies. Pierre-Simon Laplace in his lectures at the Ecole Normale Superieure in 1795

attacked the Éléction par ordre de mérite (Election by ranking of merit) system of his

contemporary Jean-Charles Borda [Szp10], later proposing a variation of a majority-rule in

its place. Much of the modern literature on voting theory is still devoted to advocacy for

particular voting systems, arguing their superiority by one metric or another.
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Voting rule Coalition size = 1 Coalition size ≥ 2

Copelandα(0 < α < 0.5)(0.5 < α < 1) P [BTT89a] NP-complete [FHS08]
Copelandα(α = {0, 1}) P [BTT89a] NP-complete [FHS10]
Copelandα(α = {0.5}) P [BTT89a] ?
Second-order Copeland NP-complete [BTT89a] NP-complete [BTT89a]
Single Transferable Vote NP-complete [BO91] NP-complete [BO91]

Maximin P [BTT89a] NP-complete [XZP+09]
Tideman Ranked Pairs NP-complete [XZP+09] NP-complete [XZP+09]

Borda P [BTT89a] NP-complete [BNW11, DKNW11]
Bucklin P [XZP+09] P [XZP+09]

Plurality with Runoff P [ZPR09] P [ZPR09]
Veto P [BTT89a] P [ZPR09]
Cup P [CSL07] P [CSL07]

Table A.1: Table of UCM results for common tractable voting systems.

In our survey we showcase manipulation results for a particular class of voting systems,

namely those with a tractable winner problem but where unweighted coalitional manipu-

lation is hard for a constant coalition size. The complexity of this case of UCM has been

determined for most common voting rules, though a few remain: Copeland0.5 remains un-

solved even as results for all other parameter values have been found [FHS10].

Several related areas of research, however, remain more or less uncharted. The most

significant simplification in the literature is that most of the hardness results achieved are

just worst-case. Several papers have studied whether voting systems are difficult to manip-

ulate in a large fraction of instances, finding that manipulation can be easy in the average

case while it is hard in the worst case [CS06, PR07b, PR07a]. Additionally, approximation

algorithms exist for several worst-case hardness results. Brelsford, Faliszewski, Hemaspaan-

dra, Schnoor, and Schnoor [BFH+08] formalized manipulation as an optimization prob-

lem and then studied whether this version of the problem is approximable. Zuckerman,

Procaccia, and Rosenschein [ZPR09] discovered an approximation algorithm for Borda ma-

nipulation before it was known to be NP-hard, and Davies, Katsirelos, Narodytska, and

Walsh [DKNW11] both proved that UCMBorda is NP-hard but also found several more

approximation algorithms for this problem. Zuckerman, Lev, and Rosenschein [ZLR10] dis-

covered an approximation algorithm for the maximin voting system. Lin explored the use

of relatively efficient algorithms for the NP-complete integer partitioning problem to solve

manipulation instances [Lin11].

Conitzer, Sandholm, and Lang qualified the manipulation problem with an additional

metric: the minimum number of candidates that must be present for manipulation to be

NP-hard [CSL07]. Additionally they broke from the standard model and studied whether

manipulation is hard for cases where manipulators do not have complete information of all

of the votes. Slinko explored how often elections will be manipulable based on the size of

the manipulative coalition [Sli04].
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Research into how often elections can be manipulated [FKN08], and more general areas

such as parametrization of NP-hard problems [Nie10] and phase transitions [CKT91, KS94,

Zha01] lead to a more nuanced approach to problem classification. Walsh has examined

phase transitions for manipulation in the veto rule [Wal09].

More specific to computational social choice, votes in the literature are most commonly

represented as transitive linear preference orderings over the set of candidates and the con-

cept of irrational votes has only been sparsely dealt with. Irrational (by which we mean

intransitive) votes, may be more apt for any number of real-world scenarios where voters

tend to rank candidates according to multiple criteria. Irrational votes are not represented

as a linear ordering but as a preference table which holds the voter’s choice for any pair of

candidates. For Copelandα for α ∈ {0, 0.5, 1}, manipulation is in P in the irrational voter

model, while it is known to be NP-hard for α ∈ {0, 1} in the standard voter model [FHS10].

Thus voting systems may have different behavior with regard to manipulation in the irra-

tional voter model and which deserves more study. Another convention is that the default

definition of UCM is constructive—i.e., efforts are directed to making a preferred candidate

a winner, rather than preventing a certain candidate from winning. Variations of UCM with

a destructive approach is another area rich with possibilities.

UCM instances presented in this paper typically have a large number of candidates and

a smaller constant-sized coalition of manipulators. In contrast, cases with a small number of

candidates and a relatively large manipulating coalition might be considered more natural.

Betzler, Niedermeier, and Woeginger mention a specific open area of research in this area:

whether there exists a combinatorial algorithm to solve Borda efficiently with few candidates

and an unbounded coalition size [BNW11]. They also mention that solving a UCMBorda

instance having a coalition of size 2 in less than O(||C||!) is still an open problem. Also

results from areas such as scheduling are being applied to algorithms for manipulation

problems [XCP10].

Another approach to the manipulation problem taken by Conitzer and Sandholm [CS03]

and Elkind and Lipmaa [EL05] is modifying voting systems to give them greater resistance

to manipulation. They add an extra initial round of subelections between subsets of the

candidates. Conitzer and Sandholm describe techniques that can make manipulation NP-

hard or even PSPACE-hard for these modified voting systems. Elkind and Lipmaa present a

version of this technique that uses one-way functions to construct the initial round schedule

from the set of votes. Reversing the one-way function is computationally hard, preventing

election organizers from gaming the initial round and forcing a desired result in polynomial

time. These techniques essentially construct new voting systems by structurally augmenting

our standard systems to imbue them with complexity.

Other related work includes the study of electoral control, which encompasses attempts
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by an election organizer to change the election result by modifying the structure of the

election in various ways [BTT92, FHHR09, EFPR10, HHR09], and the problem of bribery,

where a briber attempts to sway the result of an election by paying off a set of voters to

change their votes [FHH09, FHHR09, Fal08, EFS09]. These too are problems endemic to

many voting systems to which complexity can serve as a defense.

Another possible response to the classic voting theory results that limit the quality of

our voting systems is to reconsider the standard election model. Balinski and Laraki [BL07]

introduce a model where voters give candidates independent grades, such as the letter

grades F to A or {good, average, bad}, rather than ranking them in a linear order, similar

to approval voting or range voting. In a sense this represents a reversion to the pre-Bergson-

Samuelson model of welfare functions. Balinski and Laraki’s method gives the median grade

over all voters as the grade of each candidate, unlike range voting where the aggregate

grade is instead the average. We can give an complete aggregate preference ordering of

the candidates with the help of a tie-breaking mechanism: Successively remove one of the

median-score-awarding voters from the votes for each tied candidate and recompute the

median grades until they are no longer tied. Balinski and Laraki’s approach does not rely

on complexity but instead redesigns the election model to become strategy-proof in a limited

case defined by the authors.

Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe [FHHR11] showed that with a

restriction to single-peaked preferences, a wide range of manipulation and control instances

that are NP-hard in the general case turn out to be easy (though not any of the results we

describe here). For some voting systems these problems remain easy even with a partial

relaxation of the single-peaked model that allows for a small number of “mavericks,” whose

votes are not aligned with the single-peaked ordering [FHH11a]. The single-peaked model is

considered “the canonical setting for models of political institutions” [GPP09], so this work

calls the significance of a number of hardness results into question.

It can be argued that as compared to WCM, UCM is a better test of a voting system’s

vulnerability to manipulation. UCM serves as a special case of WCM and hence subsumes

its hardness results. In other words, if an election system is resistant to manipulation in

the UCM case, it will resist manipulation in the WCM case, but the other direction does

not necessarily follow. With this problem solved for most common voting systems, we look

forward to the resolution of the remaining open problems as well as new avenues of research

into the manipulability of voting systems.
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A.9 Constructing an Election Given a Netadv Function:

The McGarvey Method

While the traditional representation of an election requires a set of votes, we can construct

these votes given a pairwise preference relation over the set of candidates. This method was

given by McGarvey [McG53] and can be applied with very little modification to a netadv

function.

A.9.1 From a Preference Pattern to a Set of Votes

Theorem A.9.1. (McGarvey’s Theorem) Given a preference pattern we can elicit a set

of votes (defined to be strict and complete preference orderings over the set of candidates)

such that (the ordering derived from) the preference pattern is the result of the election.

Definition A.9.2. A preference pattern is a set of relations over the set of candidates.

The relations are a preference relation (expressed as aPb, i.e. a is preferred to b) and an

indifference relation (aIb, i.e. a is neither preferred to b nor is b preferred to a).

Both relations are distinct for any pair of candidates, i.e., aPb implies ¬bPa, and aIb

implies bIa. Thus we will have m(m − 1)/2 pairs over both relations where m is the

cardinality of the set of candidates. McGarvey’s method constructs a set of votes as follows:

For each pair aPb, we construct two preference orderings abc1 . . . cm−2 and

cm−2 . . . c1ab.
12 For each pair aIb, we construct abc1 . . . cm−2 and cm−2 . . . c1ba. The idea

is that on evaluation for these preferences, rankings of all candidates besides a, b from

these orderings will be equal, and the rankings of a, b reflect the preference relation un-

der consideration. Consider the example C = {a, b, c, d}. The six pairs we consider are

{aPb, aPc, aPd, bPc, bPd, cPd}.

To represent aPb we construct two votes abcd and dcab. Evaluating these two votes

in the context of pairwise rankings leads to two votes for aPb and no votes for any other

pair over the set of candidates. Similarly, for aPc, we construct acbd and dbac and so on.

The idea is that for all candidates besides the ones under consideration, preferences for and

against them cancel each other out. Hence the need for two votes for each pair. The total

number of thus-constructed votes is twice the cardinality of the preference pattern. Thus

in our example, we obtain a set of votes which yield exactly the set of pairwise relations in

the given preference pattern.

12Where candidates are listed in order of decreasing preference.
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A.9.2 From a Netadv Function to a Set of Votes

We consider the following useful property of the netadv function when constructing the

corresponding election:

Theorem A.9.3. For all pairs of candidates ci, cj where ci 6= cj, the values of netadv(ci, cj)

are either all even or all odd.

Proof. Consider two blocks of votes a, b where each block represents one side taken in a

pairwise election such that a+ b = n.

If n is even:

• Then a, b are either both odd or either both even since the sum components of an even

number are either both even, or both odd.

• The difference between two even numbers or two odd numbers is always even.

If n is odd:

• Then a, b are either odd and even, or even and odd, respectively, since the sum com-

ponents of an odd number are always a combination of even and odd.

• The difference between an even and odd number is always odd.

Thus, the netadv values are either all even or all odd.

We can see that netadv function corresponds to elements of a preference pattern:

netadv(ci, cj) > 0 corresponds to ciPcj , netadv(ci, cj) = 0 corresponds to ciIcj , and

netadv(ci, cj) < 0 corresponds to cjPci. However, the key difference between the netadv

functions and preference-pattern elements is that netadv has scores, which we must factor

into our construction.

Since we construct two votes for each pair of candidates, the problem of applying Mc-

Garvey’s method to a netadv relation with an even score is trivial—for each of the two

preference orderings constructed we simply have n/2 such votes. In fact, given a netadv

function, if one netadv score is even, then (1) the number of votes will be even, and (2)

every netadv score in that set will be even. The converse also applies: If one netadv score

in a given set is odd, then the number of votes will be odd, and every netadv score in the

given set will be odd.

Applying McGarvey’s method to an odd set of netadv scores requires a slight tweak.

We first must select some arbitrary ordering of the candidates. Then for any netadv score

s = netadv(a, b) where a precedes b in the ordering, we construct s− 1 (net) votes (or units

of score) exactly as in the case where the scores are all even (i.e., two preference orderings,
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with (s− 1)/2 such votes for each one). In the case of s = netadv(b, a) where a precedes b,

we will instead create (s+1)/2 pairs of votes to give a score of s+1 for b over a. To obtain

the last points, we construct one preference ordering corresponding to the previously chosen

ordering of the candidates. This will give one net vote to every pair a, b where a precedes b,

and minus one vote where b precedes a. Thus we achieve the desired odd numbers for each

netadv input.

Number of Constructed Votes In the above two cases (netadv scores being even or

odd) we can see the upper bound on the number of votes constructed is one for every

unit of score across all netadv values. The size of the set of votes will be bounded by
∑

ci,cj∈C |netadv(ci, cj)|. Thus given a netadv function with bounded value, we can con-

struct a reasonably small set of votes.

A.10 Graph Representation of the Netadv Function

Consider a directed antisymmetric graph G(VG, E) where VG is the set of vertices and E is

the set of directed weighted edges. We can trivially see that there can exist a maximum of

m(m − 1)/2 directed edges, where m = ||VG||. In other words, we can represent a netadv

function with such a graph G where VG is the set of candidates C and E encodes the netadv

function. Thus, for example, given a Maximin election as input in the form of a netadv

function and a set of candidates C containing a distinguished candidate c, we can construct

a graph G where VG = C and we have directed edges for every positive element of the

netadv function. For example, netadv(ci, cj) = 4 is represented as a directed edge from ci

to cj of weight 4. Similarly, given such a graph input, we can obtain an equivalent netadv

function.
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